Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/884 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarcia Sucerquia, Jorge-
dc.date.accessioned2021-10-15T20:12:29Z-
dc.date.available2021-10-15T20:12:29Z-
dc.date.issued2015-11-18-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/884-
dc.description.abstractSe presenta en este trabajo la microscopia holográfica digital sin lentes (MHDSL) como una metodología de formación de imágenes con resolución micrométrica sin el uso de lentes y el uso de fuentes multiespectrales. Los principios y desarrollos recientes en el dominio esta tecnología de microscopia son expuestos desde la perspectiva los aportes realizados por nuestro grupo. MHDSL operando a color y con láseres de femto segundo son los avances resaltados en este trabajo. Los efectos de la coherencia espacial y temporal de la fuente de iluminación en el desempeño del MHDSL son analizados por medio de la comparación de las imágenes reconstruidas del microscopio usando un LED o un láser Ti:Sa mode-locked Ti:Sa laser de 12 fs. Una sección de la cabeza de una mosca Drosophila Melanogaster se utiliza como muestra con una compleja estructura interna.spa
dc.description.abstractDigital lensless holographic microscopy (DLHM) as an imaging architecture with micrometer spatial resolution and operating with multispectral sources is shown. The principles and recent advances in the realm of this technology of microscopy are presented from the point of view of the contributions of our group. DLHM operating a full color and with femto-second lasers are the advances highlighted in this work. The effects of the spatial and the temporal coherence of the light source on the performance of the DLHM are analyzed by comparing the reconstructed images of the microscope by using a LED and a 12 fs mode-locked Ti:Sa laser. A section of the head of a Drosophila melanogaster fly is utilized as a sample with complex internal structure.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleSuplemento Microscopía holográfica digital sin lentes con resolución micrométrica y fuentes multiespectralesspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesBarton, J. J. (1988). Photoelectron Holography. Physical Review Letters, 61 (12). American Physical Society, 1356-59.spa
dcterms.referencesBodian, D. (1936). A New Method for Staining Nerve Fibers and Nerve Endings in Mounted Paraffin Sections. The Anatomical Record, 65 (1). Wiley Subscription Services, Inc., A Wiley Company, 89-97.spa
dcterms.referencesBrunel, M., Shen, H., Coetmellec, S., Lebrun, D., and Ait Ameur, H. (2012). Femtosecond Digital in-Line Holography with the Fractional Fourier Transform: Application to Phase-Contrast Metrology. Applied Physics B, 106 (3). Springer-Verlag, 583-91.spa
dcterms.referencesCuche, E., Bevilacqua, H., and Depeursinge, C. (1999). Digital Holography for Quantitative Phase-Contrast Imaging. Opt. Lett., 24 (5). OSA, 291-93.spa
dcterms.referencesFink, H-W., Schmid, H., Kreuzer, H., and Wierzbicki, A. (1991). Atomic Resolution in Lensless Low-Energy Electron Holography. Physical Review Letters, 67 (12): 1543-46.spa
dcterms.referencesGabor, D. (1948). A New Microscopic Principle. Nature, 161: 777-78.spa
dcterms.referencesGabor, D. (1949). Microscopy by Reconstructed Wave-Fronts. Proc. R. Soc. London A, 197: 454spa
dcterms.referencesGabor, D. (1951). Microscopy by Reconstructed Wave Fronts: II. Proc. Phys. Soc. London B, 64: 449.spa
dcterms.referencesGarcia-Sucerquia, J., Trujillo, C., and Restrepo, J. (2014). Microscopio Holográfico Digital Sin Lentes (MHDSL) y Método Para Visualizar Muestras. Colombia: SIC (Colombia).spa
dcterms.referencesGarcia-Sucerquia, J. (2012). Color Lensless Digital Holographic Microscopy with Micrometer Resolution. Optics Letters, 37 (10): 1724-26.spa
dcterms.referencesGarcia-Sucerquia, J. (2013). Noise Reduction in Digital Lensless Holographic Microscopy by Engineering the Light from a Light-Emitting Diode. Applied Optics, 52 (1): A232–39.spa
dcterms.referencesGarcia-Sucerquia, J., Herrera-Ramírez, J., Castaneda, R. (2006). Incoherent Recovering of the Spatial Resolution in Digital Holography. Optics Communications, 260 (1): 62-67.spa
dcterms.referencesGarcia-Sucerquia, J., Xu, W., Jericho, S., Klages, P., Jericho, M., and Kreuzer, H. (2006). Digital in-Line Holographic Microscopy. Appl. Opt., 45 (5). OSA, 836-50.spa
dcterms.referencesGoodman, J W, and Lawrence, L. (1967). Digital image formation from electronically detected holograms. Applied Physics Letters, 11 (3).spa
dcterms.referencesGoodman, J W. (2005). Introduction to Fourier Optics. Greenwood Village: Roberst & Company Publishersspa
dcterms.referencesGu, M. (2000). Advanced Optical Imaging Theory. Springer Series in Optical Sciences,. Vol. 75. Springer.spa
dcterms.referencesJericho, M H, and Kreuzer, H. (2011). Point Source Digital In-Line Holographic Microscopy. In Coherent Light Microscopy, edited by P Ferraro, A Wax, and Z Zalevvsky, 3–30. Springer-Verlag Berlin Heidelbergspa
dcterms.referencesKreis, T. (2002). Frequency Analysis of Digital Holography. Optical Engineering, 41 (4): 771-78.spa
dcterms.referencesKreuzer, H. (2002). “Holographic microscope and method of hologram reconstruction,” US,6411406spa
dcterms.referencesKreuzer, H J, Fink, H., Schmid, H., and Bonev, S. (1995). Holography of Holes, with Electrons and Photons. Journal of Microscopy, 178 (3), 191-97.spa
dcterms.referencesLeith, N., and Upatnieks, J. (1964). Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects. Journal of the Optical Society of America, 54 (11). OSA, 1295–1301.spa
dcterms.referencesMendoza-Yero, O., Calabuig, A., Tajahuerce, E., Lancis, J., Andrés, P., and Garcia-Sucerquia, J. (2013). Femtosecond Digital Lensless Holographic Microscopy to Image Biological Samples. Optics Letters, 38 (17). OSA, 3205-7.spa
dcterms.referencesMendoza-Yero, O., Tajahuerce, E., Lancis, J., and Garcia-Sucerquia, J. (2013). Diffractive Digital Lensless Holo-graphic Microscopy with Fine Spectral Tuning. Optics Letters, 38 (12): 2107-9.spa
dcterms.referencesPetruck, P, Riesenberg, R., and Kowarschik, R. (2012). Optimized Coherence Parameters for High-Resolution Holographic Microscopy. Applied Physics B, 106 (2). Springer-Verlag, 339-48spa
dcterms.referencesPicart, P., and Leval, J. (2008). General Theoretical Formulation of Image Formation in Digital Fresnel Holography: Erratum. J. Opt. Soc. Am. A, 26 (2). OSA, 244.spa
dcterms.referencesRepetto, L, Piano, E., and Pontiggia, C. (2004). Lensless Digital Holographic Microscope with Light-Emitting Diode Illumination. Opt. Lett., 29 (10). OSA, 1132-34.spa
dcterms.referencesRosenhahn, A., Staier, F., Nisius, T., Schäfer, D., Barth, R., Christophis, C., Stadler, M. et al. (2009). Digital In-Line Holography with Femtosecond VUV Radiation Provided by the Free-Electron Laser FLASH. Opt. Express, 17 (10). OSA, 8220-28.spa
dcterms.referencesSchnars, U. (1994). Direct Phase Determination in Hologram Interferometry with Use of Digitally Recorded Holograms. J. Opt. Soc. Am. A, 11 (7). OSA, 2011-15.spa
dcterms.referencesTrujillo, C, and Garcia-Sucerquia, J. (2013). Accelerated Numerical Processing of Electronically Recorded Holograms With Reduced Speckle Noise. Image Processing, IEEE Transactions on, 22 (9): 3528-37spa
dcterms.referencesWitte, S., Plauska, A., Ridder,M., Berge, Huibert D Mansvelder, H., and Groot, M. (2012). Short-Coherence off-Axis Holographic Phase Microscopy of Live Cell Dynamics. Biomed. Opt. Express, 3 (9). OSA, 2184–89.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.231-
dc.subject.proposalMicroscopía holográfica digital sin lentesspa
dc.subject.proposalDigital lensless holographic microscopyeng
dc.subject.proposalláser de femto segundosspa
dc.subject.proposalFemto second lasereng
dc.subject.proposalDrosophila melanogasterspa
dc.subject.proposalDrosophila melanogastereng
dc.subject.proposalCoherenciaspa
dc.subject.proposalCoherenceeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage20spa
dc.relation.citationendpage28spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissueSuplementospa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
2. Microscopía holográfica digital sin lentes con resolución.pdfCiencias físicas3.54 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons