Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/890 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDuque, Carlos A.-
dc.contributor.authorMorales, Álvaro-
dc.contributor.authorMora Ramos, Miguel-
dc.date.accessioned2021-10-15T20:49:44Z-
dc.date.available2021-10-15T20:49:44Z-
dc.date.issued2015-11-18-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/890-
dc.description.abstractEste trabajo corresponde a un estudio teórico de las propiedades ópticas y de impurezas para un electrón confinado en un anillo cuántico de GaAs-(Ga,Al)As sometido a los efectos combinados de campo eléctrico estacionario y radiación láser de alta intensidad no resonante. Los cálculos se hacen en la aproximación de masa efectiva con un proceso de diagonalización para resolver la ecuación de autovalores del Hamiltoniano. Se estudian la absorción óptica y los cambios en el índice de refracción. Los resultados obtenidos sugieren un corrimiento al rojo de las propiedades ópticas en función del campo eléctrico mientras que en el láser no resonante puede inducir efectos combinados de corrimientos al rojo y al azul. El trabajo es útil para entender las propiedades de impurezas en anillos cuánticos sometidos a perturbaciones que rompen la simetría azimutal del sistema tales como campos eléctricos estacionarios y radiación láser no resonante de alta intensidad.spa
dc.description.abstractThis work corresponds to a theoretical study of the optical properties of impurities for an electron confined in a GaAs- (Ga, Al) As quantum ring under the combined effects of stationary electric field and high intensity non-resonant laser radiation. Calculations are made on the effective mass approximation with a diagonalization process to solve the eigenvalues equation of the Hamiltonian. The optical absorption and the changes in refractive index are studied. The results suggest a redshift of the optical properties as a function of the electric field while the non-resonant laser can induce combined effects of redshifts and blueshifts. The work is useful for understanding the properties of impurities in quantum rings subjected to perturbations which break the azimuthal symmetry of the system such as non-stationary resonant electric fields and high-intensity laser radiation.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleSuplemento Propiedades ópticas de impurezas donadoras en anillos cuánticos sometidos a los efectos combinados de campo eléctrico y radiación láser intensa no resonantespa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAharonov Y., Bohm D., 1959. Significance of Electromagnetic Potentials in the Quantum Theory. Physical Review 115: 485-491.spa
dcterms.referencesAichinger M., Chin S. A., Krotscheck E., Räsänen E. 2006. Effects of geometry and impurities on quantum rings in magnetic fields. Phys. Rev. B 73: 195310-195310-8spa
dcterms.referencesAsmar N. G., Markelz A. G., Gwinn E .G., Cerne J., Sherwin M. S., Campman K. L., Hopkins P. F., Gossard A. C. 1995. Phys. Rev. B 51: 18041-18044spa
dcterms.referencesAssaid E., Aydi M., Feddi E., and Dujardin F. 2008. Exact analytical solutions for shallow impurity states in symmetrical paraboloidal and hemiparaboloidal quantum dots. Cent. Eur. J. Phys. 6: 97-104.spa
dcterms.referencesBarseghyan M. G., Restrepo R. L., Mora-Ramos M. E., Kirakosyan A. A., and Duque C. A. 2012. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure. Nanoscale Research Letters 7: 538.spa
dcterms.referencesBayer M., Hawrylak P., Hinzer K., Fafard S., Korkusinski M., Wasilewski Z. R., Stern O., Forchel A. 2001. Coupling and Entangling of Quantum States in Quantum Dot Molecules. Science 291: 451-453.spa
dcterms.referencesBruno-Alfonso A., Latgé A. 2000. Semiconductor quantum rings: Shallow-donor levels. Phys. Rev. B 61: 15887-15894.spa
dcterms.referencesCulchac F. J., Porras-Montenegro N., Latgé A. 2008. GaAs–(Ga,Al)As double quantum rings: confinement and magnetic field effects. J. Phys.: Condens. Matter 20: 285215-1-285215-6.spa
dcterms.referencesDuque C. A., Kasapoglu E., Sakiroglu S., Sari H., and Sökmen I. 2010. Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field. Applied Surface Science 256: 7406-7413.spa
dcterms.referencesDuque C. A., Mora-Ramos M. E, Kasapoglu E., Sari H., Sokmen I. 2011. Intense laser field effect on impurity states in a semiconductor quantum well: transition from the single to double quantum well potential. Eur. Phys. J. B 81: 441-449spa
dcterms.referencesFilikhin I., Suslov V. M., Vlahovic B. 2006. Electron spectral properties of the InAs/GaAs quantum ring Physica E 33: 349-354.spa
dcterms.referencesFulla M. R., Marín J. H., Gutiérrez W., Duque C. A., and Mora-Ramos M. E. 2014. D2+ molecular complex in ring-like nanostructures: hydrostatic pressure and electro-magnetic field effects. Acta Physica Polonica 125: 241-244.spa
dcterms.referencesGarcia J. M., Medeiros-Ribeiro G., Schmidt K., Ngo T., Feng J. L., Lorke A., Kotthaus J., Petroff P. M. 1997. Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Applied Physics Letters 71: 2014-2016.spa
dcterms.referencesHarutyunyan V. A. 2009. Semiconductor nanocylindrical heterolayer in a radial electrostatic field: electronic spectrum and optical properties. Applied Surface Science 256: 455 - 459.spa
dcterms.referencesHarutyunyan V. A. 2011. Semiconductor nanotube in strong electrostatic field. Journal of Applied Physics 109: 014325-1-014325-8.spa
dcterms.referencesKasapoglu E., Duque C. A., Sari H., Sokmen I. 2011. Intense laser field effects on the linear and nonlinear intersubband optical properties of a semi-parabolic quantum well. European Physical Journal B 82: 13-17.spa
dcterms.referencesKleemans N. A. J. M., Blokland J. H., Taboada A. G., van Genuchten H. C. M., Bozkurt M., Fomin V. M., Gladilin V. N., Granados D., Garcıa J. M., Christianen P. C. M., Maan J. C., Devreese J. T., Koenraad P. M. 2009. Excitonic behavior in self-assembled InAs/GaAs quantum rings in high magnetic fields. Phys. Rev. B 80: 155318-155318-4.spa
dcterms.referencesLorke A., Luyken R. J., Govorov A. O., Kotthaus J. P., Garcia J. M., Petroff P.M. 2000. Spectroscopy of Nanoscopic Semiconductor Rings. Physical Review Letters 84: 2223-2226.spa
dcterms.referencesMartínez-Orozco J. C., Mora-Ramos M. E., and Duque C. A. 2012. The nonlinear optical absorption and corrections to the refractive index in a GaAs n-type delta-doped field effect transistor under hydrostatic pressure. Physica Status Solidi (b) 249: 146-152.spa
dcterms.referencesMonozon B. S., Schmelcher P. 2003. Impurity center in a semiconductor quantum ring in the presence of crossed magnetic and electric fields. Phys. Rev. B67: 045203-045203-14spa
dcterms.referencesMora-Ramos M. E., Duque C. A., Kasapoglu E., Sari H., Sokmen I. 2013. Electron-related nonlinearities in GaAs–Ga1−xAlxAs double quantum wells under the effects of intense laser field and applied electric field. J. Lumin. 135: 301-311spa
dcterms.referencesPeyghambarian N., Koch S. W., Lindberg M., Fluegel B., Joffre M. 1989. Dynamic Stark effect of exciton and continuum states in CdS. Phys. Rev. Lett. 62: 1185-1188.spa
dcterms.referencesRadu A., Kirakosyan A. A., Laroze D., Baghramyan H. M., and Barseghyan M. G. 2014. Electronic and intraband optical properties of single quantum rings under intense laser field radiation. Journal of Applied Physics 116: 093101.spa
dcterms.referencesXia J-B. and Fan W-J. 1989. Electronic structures of superlattices under in-plane magnetic field. Phys. Rev. B40: 8508-8515.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.165-
dc.subject.proposalAnillos cuánticosspa
dc.subject.proposalQuantum ringseng
dc.subject.proposalImpureza donadoraspa
dc.subject.proposalDonor impurityeng
dc.subject.proposalPropiedades ópticasspa
dc.subject.proposalOptical propertieseng
dc.subject.proposalCampo eléctricospa
dc.subject.proposalElectric fieldeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage67spa
dc.relation.citationendpage76spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissueSuplementospa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
9. Propiedades ópticas de impurezas donadoras en anillos cuánticos.pdfCiencias físicas3.43 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons