Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/891 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGualdrón Reyes, Andrés F.-
dc.contributor.authorMeléndez, Angel M.-
dc.contributor.authorNiño Gómez, Martha E.-
dc.contributor.authorRodríguez González, Vicente-
dc.contributor.authorCarreño Lizcano, María I.-
dc.date.accessioned2021-10-15T20:51:35Z-
dc.date.available2021-10-15T20:51:35Z-
dc.date.issued2015-11-18-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/891-
dc.description.abstractThe effect of reduced graphene oxide (rGO) content in boron-modified TiO2 nanocrystalline films on their photocatalytic activity in phenol oxidation is investigated. Visible-light-active TiO2 modified photoanodes were prepared by incorporating graphene sheets into the sol-gel reaction of B-TiO2, followed by depositing the reaction products on 304 stainless steel plates by dip-coating technique. Thin films obtained by in situ sol-gel synthesis were characterized by FESEM, GIXRD and UV–vis diffuse reflectance spectroscopy. FESEM examination showed cracked films due to the tensile stress generated by solvent evaporation. GIXRD results showed that boron in the films inhibits the growth of crystallites. Comparing to unmodified TiO2, B-TiO2/rGO showed a red shift in the band gap. The potentiodynamic anodic polarization measurements showed that graphene incorporation improved the photogenerated electron transport within the film, hence increasing the photocurrent. These enhancements are explained on the basis of the ability of graphene in promoting the charge carrier separation by transferring the photogenerated electrons from the illuminated photoanode to the substrate. The film B-TiO2/rGO obtained from the sol solution containing 0.03 wt/v% boron and 3 wt/v% graphene exhibited the highest photocurrent, which was 30 times larger compared with the photocurrent of TiO2 film.eng
dc.description.abstractSe investiga el efecto del contenido de óxido de grafeno reducido (rGO) en películas de TiO2 modificadas con boro sobre su actividad fotocatalítica en la oxidación de fenol. Fotoánodos modificados de TiO2 activos a la luz visible fueron preparados incorporando hojas de grafeno en la reacción sol-gel de B-TiO2, seguido por el depósito de los productos de la reacción sobre láminas de acero inoxidable 304 por la técnica dip-coating. Las películas delgadas obtenidas por síntesis sol-gel in-situ fueron caracterizadas por FESEM, GIXRD y espectroscopia de reflectancia difusa UV-vis. La observación por FESEM mostró películas agrietadas debido al estrés mecánico generado por la evaporación del solvente. Los resultados de GIXRD mostraron que el boro en las películas inhibe el tamaño de los cristalitos. Comparando con el TiO2, el dióxido de titanio modificado presentó un desplazamiento de la banda de energía prohibida hacia el rojo. Las mediciones de polarización anódica potenciodinámica mostraron que la incorporación de grafeno mejora el transporte de electrones fotogenerados dentro de las películas compuestas incrementando así la fotocorriente. Estas mejoras se explican en base a la habilidad del grafeno para facilitar la separación de portadores de carga, transfiriendo los electrones fotogenerados desde la película iluminada de B-TiO2 hasta el sustrato. La película compuesta B-TiO2/rGO obtenida a partir de la solución con 0.03 % p/v de boro y 3 % p/v de grafeno presentó la fotocorriente más alta, la cual fue 30 veces mayor comparada con la fotocorriente de la película de TiO2.spa
dc.format.extent7 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleSuplemento Photoanodes modified with reduced graphene oxide to enhance photoelectrocatalytic performance of B-TiO2 under visible lightspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAkpan, U.G., Hameed, B.H. 2010. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal. A-Gen. 375: 1-11.spa
dcterms.referencesArdila-Alvarado, L.F., Fuente-Torres, S.N. 2012 (in Spanish). Electrochemical study of the degradation of cyanide on titanium dioxide films doped with nitrogen, N-TiO2, under visible light. Undergraduate thesis. Industrial University of Santander, Colombia. p. 37, 38.spa
dcterms.referencesBell, N.J., Ng, Y.H. Du, H., Coster, H., Smith, S.C., Amal, A. 2011. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C, 2011, 115 (13): 6004-6009.spa
dcterms.referencesBerger, T., Monllor-Satoca, D., Jankulovska, Lana-Villarreal, M.T., Gómez, R. 2010. The electrochemistry of nano-structured titanium dioxide electrodes. ChemPhysChem 13: 2824-2875.spa
dcterms.referencesCastellano-Leal, E.L., Córdoba, E., Meléndez, A.M. 2012 (in Spanish). Effect of TiO2xNx film thickness in electrophotocatalytic and photocatalytic degradation of methyl orange under visible-light illumination. XXVII Congress of the Mexican Society of Electrochemistry -and- 5th Meeting of the ECS Mexican Section. Toluca, Mexico. p. 1-12.spa
dcterms.referencesComninellis, C. 1994. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta 39 (11-12): 1857-1862.spa
dcterms.referencesDing, J., Yuan, Y., Xu, J., Deng, J., Guo, J. 2009. TiO2 nanopowder co-doped with iodine and boron to enhance visible-light photocatalytic activity. J. Biomed. Nanotechnol. 5: 1-7.spa
dcterms.referencesFernández, A., Lassaletta, G., Jiménez, V. M., Justo, A., González-Elipe, A. R., Herrmann, J.-M., Tahiri, H. Ait-Ichou, Y. 1995. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B: Environ. 7: 49-63.spa
dcterms.referencesGerischer, H. 1990. The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35 (11-12): 1677-1699.spa
dcterms.referencesGualdrón-Reyes, F.A. 2014. Photoelectrochemical phenol oxida-tion in aqueous solution by using boron-doped TiO2/graphene films deposited on stainless steel. Master thesis. Industrial University of Santander, Colombia. p. 37-38spa
dcterms.referencesGualdrón-Reyes, F. A., Meléndez, A.M., González, I., Lartundo-Rojas, L., Niño-Gómez, M. 2014. The effect of substrate on the photo(electro)chemical properties and photocatalytic activity of TiO2 photoanodes modified with boron and graphene. Manuscript in preparation.spa
dcterms.referencesJing, C., Zhao, X., Zhang, Y. 2007. Sol–gel fabrication of compact, crack-free alumina film. Mater. Res. Bull. 42: 600-608.spa
dcterms.referencesJoya-Herrera, L.M., Sequeda-Pico, J.A. 2014 (in Spanish). Evaluation of N-TiO2 semiconductors films in the photo-electrocatalytic oxidation of phenol with visible light. Undergraduate thesis. Industrial University of Santander, Colombia. p. 40-44.spa
dcterms.referencesKrýsa, J., Waldner, G., Měšt’ánková, H., Jirkovský, J., Grabner, G. 2006. Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer. Appl. Catal. B-Environ. 64: 290-301.spa
dcterms.referencesLi, D., Muller, M.B., Gilje, S., Kanerand, R.B., Wallace, G.G. 2008. Processable aqueous dispersions of graphene nanosheets. Nat. Biotechnol. 3: 101-105.spa
dcterms.referencesLu, X., Tian, B., Chen, F., Zhang, J. 2010. Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity. Thin Solid Films 519: 111-116.spa
dcterms.referencesMacak, J.M., Tsuchiya, H., Ghicov A., Yasuda, K., Hahn, R., Bauer, S., Schmuki, P. 2007. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr. Opin. Solid St. M. Sci. 11: 3-18.spa
dcterms.referencesMcAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., Aksay, I.A. 2007. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19: 4396-4404spa
dcterms.referencesMartínez-Orozco, R.D., Rosu, H.C., Lee, S.W., Rodríguez-González, V. 2013. Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nano-composites. J. Hazard. Mater. 263: 52-60spa
dcterms.referencesQuesada-Plata, F.E., Quintero-Ruiz, J.A. 2014 (in Spanish). Electrochemical study of the effect of copper(I) as catalyst for oxidation of cyanide under visible light using titanium oxide films doped with nitrogen. Undergraduate thesis. Industrial University of Santander, Colombia. p. 37-43.spa
dcterms.referencesRamírez-Ortega, D., Meléndez, A. M., Acevedo-Peña, P., González, I., Arroyo, R. 2014. Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim. Acta, 140: 541-549.spa
dcterms.referencesLana-Villarreal, M.T., Mao, Y., Wong, S.S., Gómez, R. 2010. Photoelectrochemical behavior of anatase nanoporous films: effect of the nanoparticle organization. Nanoscale, 2: 1690-1698.spa
dcterms.referencesSokolov, S., Ortel, E., Radnik, J., Kraehnert, R. 2009. Influence of steel composition and pre-treatment conditions on morphology and microstructure of TiO2 mesoporous layers produced by dip coating on steel substrates Thin Solid Films, 518: 27-35.spa
dcterms.referencesWang, P., Ao, Y., Wang, C., Hou, J., Qian, J. 2012. Enhanced photoelectrocatalytic activity for dye degradation by graphene–titania composite film electrodes. J. Hazard. Mater. 223-224: 79-83.spa
dcterms.referencesWang, D., Li, X., Chen, J., Tao, X. 2012. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem. Eng. J. 198-199: 547-554spa
dcterms.referencesZaikovskii, A.V., Mal’tsev, V.A., Novopashin, S.A., Sakhapov, S.Z., Smovzh, D.V. 2012. Synthesis of nanocrystalline carbon upon methane pyrolysis in arc discharge. Nanotechnologies in Russia, 7: 11.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.252-
dc.subject.proposalPelículas delgadas de materiales compuestosspa
dc.subject.proposalComposite thin filmseng
dc.subject.proposalFotoelectrodos modificados de TiO2os modificados de TiO2spa
dc.subject.proposalModified TiO2 photoelectrodeeng
dc.subject.proposalGrafenospa
dc.subject.proposalGrapheneeng
dc.subject.proposalTransporte elecrónicospa
dc.subject.proposalElectron transporteng
dc.subject.proposalOxidación fotoelectrocatalíticaspa
dc.subject.proposalPhotoelectrocatalytic oxidation.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage77spa
dc.relation.citationendpage83spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameCentro de Investigaciones en Catálisis (CICAT)spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissueSuplementospa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales



This item is licensed under a Creative Commons License Creative Commons