Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/893 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMedina Estrada, Francisco-
dc.contributor.authorGarcia Sucerquia, Jorge-
dc.date.accessioned2021-10-15T20:52:52Z-
dc.date.available2021-10-15T20:52:52Z-
dc.date.issued2015-11-18-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/893-
dc.description.abstractSe presenta en este artículo un recuento resumido desde la perspectiva de los autores de la forma como se inició el estudio de la luz en Antioquia y como se mantiene. Se hace énfasis en las contribuciones a este proceso por parte del Prof. Dr. Peter Barlai, quien llegó desde Austria al principio de los años 70, estableció las bases de los grupos de óptica de las dos Universidades más importantes de la región antioqueña. Se mencionan además, los aportes a la constitución de los demás grupos que estudian la luz en Antioquia por parte de instituciones nacionales e internacionales. Se muestra la conexión existente entre el trabajo actual de los grupos más representativos y los estudios originales en el campo de la luz en la región.spa
dc.description.abstractIn this paper, we present a condensed summary on the onset of the study of light in Antioquia and how it has prevailed until today. We highlight the contributions of Prof. Dr. Peter Barlai since he arrived from Austria in the early seventies, and how he laid the basis for the establishment of the optics groups of the two leading Universities of Antioquia. In addition, we explain the involvement of national and international institutes in the formation of the optics groups of Antioquia, as well as the link between the original onset of the study of light and the current interest of the leading groups.eng
dc.format.extent5 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleLa luz a Antioquia llegó desde Austria y perduraspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científicaspa
dcterms.referencesAngel-Toro, L. Sierra-Sosa, D., Tebaldi, M., & Bolognini, N. (2012). Vortex Metrology Using Fourier Analysis Techniques: Vortex Networks Correlation Fringes. Applied Optics, 51 (30). OSA, 7411-19. doi:10.1364/AO.51.007411spa
dcterms.referencesAngel-Toro, L. Sierra-Sosa, D., Tebaldi, M., & Bolognini, N. (2013). In-Plane Displacement Measurement in Vortex Metrology by Synthetic Network Correlation Fringes. Journal of the Optical Society of America A, 30 (3). OSA, 462-69. doi:10.1364/JOSAA.30.000462spa
dcterms.referencesBarlai, P. (1971)a). Holographic Reconstruction without Granularity. Naturforsch, 26 1, 1441spa
dcterms.referencesBarlai, P. (1971)b). Information Processing by Holograms. Kybernetik, 2: 78.spa
dcterms.referencesBarlai, P. (1971)c). Quantum Theory of Diffraction. Angeu Phys, 31: 82spa
dcterms.referencesBarlai, P. (1972)a). Hologramme Mit Nichtspharischer Reférenzwelle Im Inkoharenten Strahlungsfeld. Z. Naturforsch, 27a: 1777-83.spa
dcterms.referencesBarlai, P. (1972)b). Phasenhologramme in Photographischen Emulsionen Mit Hohem Wirkungsgrad Im Blaugriinen Spektralbereich. Z. Naturforsch, 27a: 544.spa
dcterms.referencesBarlai, P. (1973)a). Higher-Order Coherence in Optics. Naturforsch, 28a.spa
dcterms.referencesBarlai, P. (1973)b). Koharenz Hoherer Ordnung in Der Optik Und Ihre MeBbarkeit. Z. Naturforsch, 28a: 19461950spa
dcterms.referencesBarrera, J., Mira, A., & Torroba, R. (2013). Optical Encryption and QR Codes: Secure and Noise-Free Information Retrieval. Optics Express, 21 (5). OSA, 5373-78. doi:10. 1364/OE.21.005373.spa
dcterms.referencesBarrera, J., Tebaldi, M., Ríos, C., Rueda, E., Bolognini, N., & Torroba, R. (2012). Experimental Multiplexing ofEncrypted Movies Using a JTC Architecture. Optics Express, 20 (4). OSA, 3388-93. doi:10.1364/OE.20.003388spa
dcterms.referencesBarrera, J., Vélez, A., & Torroba, R. (2014). Experimental Scrambling and Noise Reduction Applied to the Optical Encryption of QR Codes. Optics Express, 22 (17). OSA, 20268-77. doi:10.1364/OE.22.020268.spa
dcterms.referencesBarrera, J., & Torroba, R. (2009). Efficient Encrypting Procedure Using Amplitude and Phase as Independent Channels to Display Decoy Objects. Applied Optics, 48 (17). OSA, 3120-28. doi:10.1364/AO.48.003120.spa
dcterms.referencesCastañeda, R, & Medina, F. (1999). Moiré Patterns in Spatially Partial Coherent Interference with Non-Regular Gratings. Optik, 110 (3). Elsevier, 123-26spa
dcterms.referencesCastañeda, R. (2014). Electromagnetic Wave Fields in the Microdiffraction Domain. Physical Review A, 89 (1). American Physical Society, 13843. http://link.aps.org/doi/10.1103/PhysRevA.89.013843.spa
dcterms.referencesCastañeda, R, Garcia-Sucerquia, J., Henao, R., & Trabocchi. O. (2001). Information Encryption through Dyadic Permutations. Optics and Lasers in Engineering, 36 (6): 537-44. doi:10.1016/S0143-8166(01)00079-3.spa
dcterms.referencesCheck out the Top Cited Articles in Applied Optics. (2013). Optical Society of America.http://www.medellin.unal.edu.co/boletines/images/Top_Cited_Articles_from_Applied_Optics_2014.pdf.spa
dcterms.referencesDoblas, A., Hincapie-Zuluaga, D., Saavedra, G., Martínez-Corral, M., & Garcia-Sucerquia. J. (2015). Physical Compensation of Phase Curvature in Digital Holographic Microscopy by Use of Programmable Liquid Lens. Applied Optics, 54 (16). OSA, 5229-33. doi:10.1364/AO.54.005229.spa
dcterms.referencesDoblas, A., Sánchez-Ortiga, E., Martínez-Corral, M., & Garcia-Sucerquia, J. (2015). Study of Spatial Lateral Resolution in off-Axis Digital Holographic Microscopy. Optics Communications, 352 (October), 63-69. doi:10. 1016/j.optcom.2015.04.066spa
dcterms.referencesGarcia-Sucerquia, J., Trujillo, C., & Restrepo, J. (2014). Microscopio Holográfico Digital Sin Lentes (MHDSL) Y Método Para Visualizar Muestras. Colombia: SIC (Colombia).spa
dcterms.referencesGarcia-Sucerquia, J. (2012). Color Lensless Digital Holographic Microscopy with Micrometer Resolution. Optics Letters, 37 (10), 1724-26. doi:10.1364/OL.37.001724spa
dcterms.referencesGarcia-Sucerquia, J, Medina, F., & Matteucci, G. (2004). Optical Tubular Structures Produced by Diffraction of Circular Apertures. Optics and Lasers in Engineering, 42 (1): 61-70. doi:10.1016/S0143-8166(03)00077-0.spa
dcterms.referencesGarcia-Sucerquia, J., Herrera-Ramírez, J., & Velásquez, D. (2005). Reduction of Speckle Noise in Digital Holography by Using Digital Image Processing. Optik - International Journal for Light and Electron Optics, 116 (1): 44-48. doi:10.1016/j.ijleo.2004.12.004.spa
dcterms.referencesGarcia-Sucerquia, J., Xu, W., Jericho, S., Klages, P., Jericho, M., & Kreuzer, H. (2006). Digital in-Line Holographic Microscopy. Appl. Opt., 45 (5). OSA, 836-50.spa
dcterms.referencesGarzón, J., Gharbi, T., & Meneses, J. (2008). Real Time Determination of the Optical Thickness and Topography of Tissues by Chromatic Confocal Microscopy. Journal of Optics A: Pure and Applied Optics, 10 (10): 104028. http://stacks.iop.org/1464-4258/10/i=10/a=104028.spa
dcterms.referencesHenao, R., Medina, F., Rabal, H., & Trivi, M. (1993). Three-Dimensional Speckle Measurements with a Diffraction Grating. Applied Optics, 32 (5). OSA, 726-29. doi:10.1364/AO.32.000726.spa
dcterms.referencesHenao, R, Rabal, H., Tagliaferri, A., & Torroba, R. (1997). Determination of the Zero-Order Fringe Position in Digital Speckle Pattern Interferometry. Applied Optics, 36 (10). OSA, 2066–69. doi:10.1364/AO.36.002066.spa
dcterms.referencesHincapie, D., Herrera-Ramirez J., & Garcia-Sucerquia, J. (2015). Single-Shot Speckle Reduction in Numerical Reconstruction of Digitally Recorded Holograms. Optics Letters, 40 (8). OSA, 1623–26. doi:10.1364/OL.40.001623spa
dcterms.referencesKakarenko, K., Ducin, I., Grabowiecki,K., Jaroszewicz, Z., Kolodziejczyk, A., Mira-Agudelo, A., Krzysztof Petelczyc, Składowska, A., & Sypek, M. (2015). Assessment of Imaging with Extended Depth-of-Field by Means of the Light Sword Lens in Terms of Visual Acuity Scale. Biomedical Optics Express, 6 (5). OSA, 1738-48. doi:10.1364/BOE.6.001738.spa
dcterms.referencesLondoño, N, Rueda,E., Gómez, J., & Lencina, A. (2015). Generation of Optical Vortices by Using Binary Vortex Producing Lenses. Applied Optics, 54 (4). OSA, 796-801. doi:10.1364/AO.54.000796.spa
dcterms.referencesMatteucci, G., Medina, F. & Pozzi, G. (1992). Electron-Optical Analysis of the Electrostatic Aharonov-Bohm Effect. Ultramicroscopy, 41 (4): 255-68. doi:10.1016/0304-3991(92) 90205-X.spa
dcterms.referencesMedina, F., & Pozzi, G. (1990). Spatial Coherence of Anisotropic and Astigmatic Sources in Interference Electron Microscopy and Holography. Journal of the Optical Society of America A, 7 (6). OSA, 1027-33. doi:10.1364/JOSAA.7.001027spa
dcterms.referencesMedina, F., Garcia-Sucerquia, J., Castañeda, R., & Matteucci, G. (2004). Angular Criterion to Distinguish between Fraunhofer and Fresnel Diffraction. Optik - International Journal for Light and Electron Optics, 115 (11-12): 547-52. doi:10.1078/0030-4026-00547.spa
dcterms.referencesMendoza-Yero, O., Calabuig, A., Tajahuerce, E., Lancis, J., Andrés, P., & Garcia-Sucerquia, J. (2013). Femtosecond Digital Lensless Holographic Microscopy to Image Biological Samples. Optics Letters, 38 (17). OSA, 3205-7.spa
dcterms.referencesMendoza-Yero, O., Tajahuerce, E., Lancis, J., & Garcia-Sucerquia, J. (2013). Diffractive Digital Lensless Holo-graphic Microscopy with Fine Spectral Tuning. Optics Letters, 38 (12): 2107-9.spa
dcterms.referencesReyes-Vera, E, Torres, P., Chesini, G., & Cordeiro, C. (2012). Temperature Sensitivity of Photonic Crystal Fiber with Integrated Electrodes. In Press Opt Express,.spa
dcterms.referencesReyes-Vera, E., Gómez-Cardona, N., Chesini, G, Cordeiro, C., & Torres, P. (2014). Temperature Sensibility of the Birefringence Properties in Side-Hole Photonic Crystal Fiber Filled with Indium. Applied Physics Letters, 105 (20): -. doi:http://dx.doi.org/10.1063/1.4902157.spa
dcterms.referencesRueda, E, Muñetón, D., Gómez, J., & Lencina, A. (2013). High-Quality Optical Vortex-Beam Generation by Using a Multilevel Vortex-Producing Lens. Optics Letters, 38 (19). OSA, 3941–44. doi:10.1364/OL.38.003941.spa
dcterms.referencesSánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M, & Garcia-Sucerquia, J. (2014). Microscopio, Método Y Programa de Ordenador Para La Obtención de Imágenes Cuantitativas de Fase Por Medio de Microscopía Holográfica Digital, Y Kit Para Adaptar Un Microscopio Óptico. España: Oficna Española de Patentes.spa
dcterms.referencesSánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M. & Garcia-Sucerquia, J. (2014). Off-Axis Digital Holographic Microscopy: Practical Design Parameters for Operating at Diffraction Limit. Applied Optics, 53 (10). OSA, 2058-66. doi:10.1364/ao.53.002058.spa
dcterms.referencesSerna, J., Hamad, A., Garcia, H., & Rueda, E. (2014). Measurement of Nonlinear Optical Absorption and Non-Linear Optical Refraction in CdS and ZnSe Using an Electrically Focus-Tunable Lens. In 12th International Conference on Fiber Optics and Photonics, T2C.2. OSA Technical Digest (online). Kharagpur : Optical Society of America. doi:10.1364/PHOTONICS.2014.T2C.2.spa
dcterms.referencesSierra-Sosa, D., Angel-Toro, L., Bolognini, N., & Tebaldi, M. (2013). Novel Vortex-Transform for High Frequency Modulated Patterns. Optics Express, 21 (20). OSA, 23706-11. doi:10.1364/OE.21.023706.spa
dcterms.referencesTorres, P., Aristizábal, V., & Andrés, M. (2011). Modeling of Photonic Crystal Fibers from the Scalar Wave Equation with a Purely Transverse Linearly Polarized Vector Potential. J. Opt. Soc. Am. B, 28 (4). OSA, 787-91. http://josab.osa.org/abstract.cfm?URI=josab-28-4-787.spa
dcterms.referencesTorroba, R., Henao, R., & Carletti, C. (1996). Digital Polarization-Encoding Technique for Optical Logic Operations. Optics Letters, 21 (23). OSA, 1918-20. doi:10.1364/OL.21.001918.spa
dcterms.referencesVelásquez, D., & Garcia-Sucerquia, J. (2006). Three-Dimensional Surface Contouring of Macroscopic Objects by Means of Phase-Difference Images. Applied Optics, 45 (25): 6381-87.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.264-
dc.subject.proposalÓptica en Antioquiaspa
dc.subject.proposalOptics in Antioquiaeng
dc.subject.proposalPeter Barlai.spa
dc.subject.proposalPeter Barlaieng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume39spa
dc.relation.citationstartpage93spa
dc.relation.citationendpage97spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionAntioquia, Colombia-
dc.relation.citationissueSuplementospa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
11. La luz a Antioquia llegó desde Austria y perdura.pdfCrónicas2.18 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons