Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/907 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÁngel, Juana-
dc.date.accessioned2021-11-12T22:18:48Z-
dc.date.available2021-11-12T22:18:48Z-
dc.date.issued2016-03-28-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/907-
dc.description.abstractEl origen, la función y el repertorio de las células B de memoria IgM humanas (caracterizadas por ser positivas para CD27 IgM e IgD) son controvertidos, y se ha propuesto que esta población es heterogénea. Aunque algunas veces contradictorias, las evidencias actuales apuntan a la existencia de por lo menos dos subpoblaciones de dichas células en sangre: por un lado, células B circulantes de la zona marginal del bazo, con algunas características similares a las células innatas y probablemente responsables de las respuestas de activación independiente de los linfocitos T, que protegen contra bacterias encapsuladas como Streptococcus sp, y, por otro lado, células B con indicios de haber pasado por centros germinales que se asemejan a las células B de la respuesta adaptativa, y que serían un reservorio de células B de larga vida a partir del cual se reconstituirían continuamente las células B de memoria conmutadas. Aunque se ha propuesto que la expresión diferencial de IgM e IgD en las células B de memoria IgM serviría para distinguir estas dos subpoblaciones de células B, se requieren más estudios fenotípicos y funcionales para sustentar esta clasificación.spa
dc.description.abstractThe origin, function and repertoire of human IgM memory B cells (IgM mBc, characterized by the expression of CD27+ IgM+ IgD+) are controversial, and it has been proposed that this population is heterogeneous. Although contradictory in some cases, available evidence suggests that at least two subpopulations of IgM mBc circulate in blood. On the one hand, circulating B cells from the marginal zone of the spleen with innate-like characteristics, probably responsible for protective responses against encapsulated bacteria like Streptococcus sp. On the other hand, B cells with markers that suggest they have undergone transit in germinal centers, typical of adaptive immunity, and that may represent a reservoir of long-lived mBc capable of reconstituting switched mBc. It has been proposed that the differential expression of IgM and IgD on circulating IgM mBc may be useful to distinguish these subpopulations, but more phenotypic and functional studies are needed for this purpose.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative commons Attribution- NoComercial 4.0 International (CC BY 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleHeterogeneidad de las células B de memoria IgM humanasspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAgematsu, K., Nagumo, H., Shinozaki, K., Hokibara, S., Yasui, K., Terada, K., Kawamura, N., Toba, T., Nonoyama, S., Ochs, H.D., Komiyama, A. (1998). Absence of IgDCD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102 (4): 853-860.spa
dcterms.referencesAgematsu, K., Nagumo, H., Yang, F.C., Nakazawa, T., Fukushima, K., Ito, S., Sugita, K., Mori, T., Kobata, T., Morimoto, C., Komiyama, A. (1997). B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur J Immunol. 27 (8): 2073-2079. Bagnara, D., Squillario, M., Kipling, D., Mora, T., Walczak, A.M., Da Silva, L., Weller, S., Dunn-Walters, D.K., Weill, J.C., Reynaud, C.A. (2015). A reassessment of IgM memory subsets in humans. J Immunol. 195 (8): 3716-3724.spa
dcterms.referencesBagnara, D., Squillario, M., Kipling, D., Mora, T., Walczak, A.M., Da Silva, L., Weller, S., Dunn-Walters, D.K., Weill, J.C., Reynaud, C.A. (2015). A reassessment of IgM memory subsets in humans. J Immunol. 195 (8): 3716-3724.spa
dcterms.referencesBagnara, D., Squillario, M., Kipling, D., Mora, T., Walczak, A.M., Da Silva, L., Weller, S., Dunn-Walters, D.K., Weill, J.C., Reynaud, C.A. (2015). A reassessment of IgM memory subsets in humans. J Immunol. 195 (8): 3716-3724.spa
dcterms.referencesBerkowska, M.A., Driessen, G.J., Bikos, V., GrosserichterWagener, C., Stamatopoulos, K., Cerutti, A., He, B., Biermann, K., Lange, J.F., van der Burg, M., van Dongen, J.J., van Zelm, M.C. (2011a). Human memory B cells originate from three distinct germinal centerdependent and -independent maturation pathways. Blood. 118 (8): 2150-2158.spa
dcterms.referencesBerkowska, M.A., van der Burg, M., van Dongen, J.J., van Zelm, M.C. (2011b). Checkpoints of B cell differentiation: Visualizing Ig-centric processes. Ann N Y Acad Sci. 1246: 11-25.spa
dcterms.referencesCapolunghi, F., Cascioli, S., Giorda, E., Rosado, M.M., Plebani, A., Auriti, C., Seganti, G., Zuntini, R., Ferrari, S., Cagliuso, M., Quinti, I., Carsetti, R. (2008). CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol. 180 (2): 800-808spa
dcterms.referencesCattoretti, G., Buttner, M., Shaknovich, R., Kremmer, E., Alobeid, B., Niedobitek, G. (2006). Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood. 107 (10): 3967-3975.spa
dcterms.referencesCerutti, A., Cols, M., Puga, I. (2013). Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 13 (2): 118-132spa
dcterms.referencesChen, K., Cerutti, A. (2010). New insights into the enigma of immunoglobulin D. Immunol Rev. 237 (1): 160-179spa
dcterms.referencesColonna-Romano, G., Bulati, M., Aquino, A., Pellicano, M., Vitello, S., Lio, D., Candore, G., Caruso, C. (2009). A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 130 (10): 681-690.spa
dcterms.referencesDella Valle, L., Dohmen, S.E., Verhagen, O.J., Berkowska, M.A., Vidarsson, G., Ellen van der Schoot, C. (2014). The majority of human memory B cells recognizing RhD and tetanus resides in IgM+ B cells. J Immunol. 193 (3): 1071-1079spa
dcterms.referencesDescatoire, M., Weller, S., Irtan, S., Feuillard, J., Storck, S., Guiochon-Mantel, A., Bouligand, J., Morali, A., Cohen, J., Jacquemin, E., Iascone, M., Bole-Feysot, C., Cagnard, N., Weill, J.C., Reynaud, C.A. (2014). Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. J Exp Med. 211 (5): 987-1000.spa
dcterms.referencesDogan, I., Bertocci, B., Vilmont, V., Delbos, F., Megret, J., Storck, S., Reynaud, C.A., Weill, J.C. (2009). Multiple layers of B cell memory with different effector functions. Nat Immunol. 10 (12): 1292-1299.spa
dcterms.referencesDunn-Walters, D.K., Isaacson, P.G., Spencer, J. (1995). Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med. 182 (2): 559-566.spa
dcterms.referencesEttinger, R., Sims, G.P., Robbins, R., Withers, D., Fischer, R.T., Grammer, A.C., Kuchen, S., Lipsky, P.E. (2007). IL21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol. 178 (5): 2872-2882.spa
dcterms.referencesFecteau, J.F. & Neron, S. (2003). CD40 stimulation of human peripheral B lymphocytes: Distinct response from naive and memory cells. J Immunol. 171 (9): 4621-4629.spa
dcterms.referencesFranco, M. & Greenberg, H. (2013). Rotavirus. Microbiol Spectrum. 1 (2)spa
dcterms.referencesHendricks, J., Visser, A., Dammers, P.M., Burgerhof, J.G., Bos, N.A., Kroese, F.G. (2011). Class-switched marginal zone B cells in spleen have relatively low numbers of somatic mutations. Mol Immunol. 48 (6-7): 874-882.spa
dcterms.referencesHerrera, D., Rojas, O.L., Duarte-Rey, C., Mantilla, R.D., Ángel, J., Franco, M.A. (2014). Simultaneous assessment of rotavirus-specific memory B cells and serological memory after B cell depletion therapy with rituximab. PLoS One. 9 (5): e97087.spa
dcterms.referencesHerrera, D., Vásquez, C., Corthésy, B., Franco, M.A., Ángel, J. (2013). Rotavirus specific plasma secretory immunoglobulin in children with acute gastroenteritis and children vaccinated with an attenuated human rotavirus vaccine. Hum Vaccin Immunother. 9 (11): 2409-2417.spa
dcterms.referencesHimmelmann, A., Gautschi, O., Nawrath, M., Bolliger, U., Fehr, J., Stahel, R.A. (2001). Persistent polyclonal B-cell lymphocytosis is an expansion of functional IgD(+) CD27(+) memory B cells. Br J Haematol. 114 (2): 400-405.spa
dcterms.referencesJackson, S.M., Wilson, P.C., James, J.A., Capra, J.D. (2008). Human B cell subsets. Adv Immunol. 98: 151-224.spa
dcterms.referencesKaji, T., Ishige, A., Hikida, M., Taka, J., Hijikata, A., Kubo, M., Nagashima, T., Takahashi, Y., Kurosaki, T., Okada, M., Ohara, O., Rajewsky, K., Takemori, T. (2012). Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J Exp Med. 209 (11): 2079-2097.spa
dcterms.referencesKendall, E.A., Tarique, A.A., Hossain, A., Alam, M.M., Arifuzzaman, M., Akhtar, N., Chowdhury, F., Khan, A.I., Larocque, R.C., Harris, J.B., Ryan, E.T., Qadri, F., Calderwood, S.B. (2010). Development of immunoglobulin M memory to both a T-cell-independent and a T-cell-dependent antigen following infection with Vibrio cholerae O1 in Bangladesh. Infect Immun. 78 (1): 253-259.spa
dcterms.referencesKhaskhely, N., Mosakowski, J., Thompson, R.S., Khuder, S., Smithson, S.L., Westerink, M.A. (2012). Phenotypic analysis of pneumococcal polysaccharide-specific B cells. J Immunol. 188 (5): 2455-2463.spa
dcterms.referencesKlein, U., Kuppers, R., Rajewsky, K. (1997). Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood. 89 (4): 1288-1298.spa
dcterms.referencesKlein, U., Rajewsky, K., Kuppers, R. (1998). Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 188 (9): 1679-1689.spa
dcterms.referencesKruetzmann, S., Rosado, M.M., Weber, H., Germing, U., Tournilhac, O., Peter, H.H., Berner, R., Peters, A., Boehm, T., Plebani, A., Quinti, I., Carsetti, R. (2003). Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med. 197 (7): 939-945.spa
dcterms.referencesLanzavecchia, A. & Sallusto, F. (2009). Human B cell memory. Curr Opin Immunol. 21 (3): 298-304spa
dcterms.referencesLink, A., Zabel, F., Schnetzler, Y., Titz, A., Brombacher, F., Bachmann, M.F. (2012). Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol. 188 (8): 3724-3733.spa
dcterms.referencesMartin, F. & Kearney, J.F. (2002). Marginal-zone B cells. Nat Rev Immunol. 2 (5): 323-335.spa
dcterms.referencesMartin, V., Wu, Y.C., Kipling, D., Dunn-Walters, D.K. (2015). Age-related aspects of human IgM B cell heterogeneity. Ann N Y Acad Sci. 1361 (1): 153-163spa
dcterms.referencesMaurer, D., Fischer, G.F., Fae, I., Majdic, O., Stuhlmeier, K., Von Jeney, N., Holter, W., Knapp, W. (1992). IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. J Immunol. 148 (12): 3700-3705.spa
dcterms.referencesMoens, L., Wuyts, G., Boon, L., den Hartog, M.T., Ceuppens, J.L., Bossuyt, X. (2008). The human polysaccharideand protein-specific immune response to Streptococcus pneumoniae is dependent on CD4(+) T lymphocytes, CD14(+) monocytes, and the CD40-CD40 ligand interaction. The Journal of allergy and clinical immunology. 122 (6): 1231-1233.spa
dcterms.referencesMroczek, E.S., Ippolito, G.C., Rogosch, T., Hoi, K.H., Hwangpo, T.A., Brand, M.G., Zhuang, Y., Liu, C.R., Schneider, D.A., Zemlin, M., Brown, E.E., Georgiou, G., Schroeder, H.W., Jr. (2014). Differences in the composition of the human antibody repertoire by B cell subsets in the blood. Frontiers in immunology. 5: 96.spa
dcterms.referencesNagelkerke, S.Q., aan de Kerk, D.J., Jansen, M.H., van den Berg, T.K., Kuijpers, T.W. (2014). Failure to detect functional neutrophil B helper cells in the human spleen. PLoS One. 9 (2): e88377.spa
dcterms.referencesNarváez, C.F., Feng, N., Vásquez, C., Sen, A., Ángel, J., Greenberg, H.B., Franco, M.A. (2012). Human rotavirusspecific IgM Memory B cells have differential cloning efficiencies and switch capacities and play a role in antiviral immunity in vivo. J Virol. 86 (19): 10829-10840.spa
dcterms.referencesPape, K.A., Taylor, J.J., Maul, R.W., Gearhart, P.J., Jenkins, M.K. (2011). Different B cell populations mediate early and late memory during an endogenous immune response. Science. 331 (6021): 1203-1207.spa
dcterms.referencesPascual, V., Liu, Y.J., Magalski, A., de Bouteiller, O., Banchereau, J., Capra, J.D. (1994). Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med. 180 (1): 329-339.spa
dcterms.referencesPillai, S. & Cariappa, A. (2009). The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 9 (11): 767-777.spa
dcterms.referencesPuga, I., Cols, M., Barra, C.M., He, B., Cassis, L., Gentile, M., Comerma, L., Chorny, A., Shan, M., Xu, W., Magri, G., Knowles, D.M., Tam, W., Chiu, A., Bussel, J.B., Serrano, S., Lorente, J.A., Bellosillo, B., Lloreta, J., Juanpere, N., Alameda, F., Baro, T., de Heredia, C.D., Toran, N., Catala, A., Torrebadell, M., Fortuny, C., Cusi, V., Carreras, C., Díaz, G.A., Blander, J.M., Farber, C.M., Silvestri, G., Cunningham-Rundles, C., Calvillo, M., Dufour, C., Notarangelo, L.D., Lougaris, V., Plebani, A., Casanova, J.L., Ganal, S.C., Diefenbach, A., Arostegui, J.I., Juan, M., Yague, J., Mahlaoui, N., Donadieu, J., Chen, K., Cerutti, A. (2012). B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 13 (2): 170-180.spa
dcterms.referencesReynaud, C.A., Descatoire, M., Dogan, I., Huetz, F., Weller, S., Weill, J.C. (2012). IgM memory B cells: a mouse/human paradox. Cell Mol Life Sci. 69 (10): 1625-1634.spa
dcterms.referencesReynaud, C.A. & Weill, J.C. (2012). Gene profiling of CD11b and CD11b B1 cell subsets reveals potential cell sorting artifacts. J Exp Med. 209 (3): 433-434; author reply: 434-436.spa
dcterms.referencesRichards, S.J., Morgan, G.J., Hillmen, P. (2000). Immunophenotypic analysis of B cells in PNH: Insights into the generation of circulating naive and memory B cells. Blood. 96 (10): 3522-3528.spa
dcterms.referencesRojas, O.L., Caicedo, L., Guzmán, C., Rodríguez, L.S., Castañeda, J., Uribe, L., Andrade, Y., Pinzón, R., Narváez, C.F., Lozano, J.M., De Vos, B., Franco, M.A., Ángel, J. (2007). Evaluation of circulating intestinally committed memory B cells in children vaccinated with attenuated human rotavirus vaccine. Viral Immunol. 20 (2): 300-311spa
dcterms.referencesRojas, O.L., Narváez, C.F., Greenberg, H.B., Ángel, J., Franco, M.A. (2008). Characterization of rotavirus specific B cells and their relation with serological memory. Virology. 380 (2): 234-242.spa
dcterms.referencesRosado, M.M., Gesualdo, F., Marcellini, V., Di Sabatino, A., Corazza, G.R., Smacchia, M.P., Nobili, B., Baronci, C., Russo, L., Rossi, F., Vito, R.D., Nicolosi, L., Inserra, A., Locatelli, F., Tozzi, A.E., Carsetti, R. (2013). Preserved antibody levels and loss of memory B cells against pneumococcus and tetanus after splenectomy: Tailoring better vaccination strategies. Eur J Immunol. 43 (10): 2659-2670.spa
dcterms.referencesRothstein, T.L. & Quach, T.D. (2015). The human counterpart of mouse B-1 cells. Ann N Y Acad Sci. 1362 (1): 143-162spa
dcterms.referencesScheeren, F.A., Nagasawa, M., Weijer, K., Cupedo, T., Kirberg, J., Legrand, N., Spits, H. (2008). T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. J Exp Med. 205 (9): 2033-2042.spa
dcterms.referencesSeguin, C.A., Draper, J.S., Nagy, A., Rossant, J. (2008). Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell. 3 (2): 182-195.spa
dcterms.referencesSeifert, M. & Kuppers, R., (2009). Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J Exp Med. 206 (12): 2659-2669.spa
dcterms.referencesSeifert, M., Przekopowitz, M., Taudien, S., Lollies, A., Ronge, V., Drees, B., Lindemann, M., Hillen, U., Engler, H., Singer, B.B., Kuppers, R. (2015). Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc Natl Acad Sci USA. 112 (6): E546-555.spa
dcterms.referencesShi, Y., Agematsu, K., Ochs, H.D., Sugane, K. (2003). Functional analysis of human memory B-cell subpopulations: IgD+CD27+ B cells are crucial in secondary immune response by producing high affinity IgM. Clin Immunol. 108 (2): 128-137.spa
dcterms.referencesShi, Y., Yamazaki, T., Okubo, Y., Uehara, Y., Sugane, K., Agematsu, K. (2005). Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 175 (5): 3262-3267spa
dcterms.referencesSpencer, J., Finn, T., Pulford, K.A., Mason, D.Y., Isaacson, P.G. (1985). The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin Exp Immunol. 62 (3): 607-612.spa
dcterms.referencesTakemori, T., Kaji, T., Takahashi, Y., Shimoda, M., Rajewsky, K. (2014). Generation of memory B cells inside and outside germinal centers. Eur J Immunol. 44 (5): 1258-1264.spa
dcterms.referencesTangye, S.G., Avery, D.T., Deenick, E.K., Hodgkin, P.D. (2003). Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 170 (2): 686-694.spa
dcterms.referencesTangye, S.G. & Good, K.L. (2007). Human IgM+CD27+ B cells: memory B cells or “memory” B cells? J Immunol. 179 (1): 13-19.spa
dcterms.referencesTangye, S.G., Liu, Y.J., Aversa, G., Phillips, J.H., de Vries, J.E. (1998). Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 188 (9): 1691-1703.spa
dcterms.referencesTaylor, J.J., Pape, K.A., Jenkins, M.K. (2012). A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J Exp Med. 209 (3): 597-606.spa
dcterms.referencesVásquez, C., Franco, M.A., Ángel, J. (2015). Rapid proliferation and differentiation of a subset of circulating IgM memory B cells to a CpG/Cytokine stimulus in vitro. PLoS One. 10 (10): e0139718.spa
dcterms.referencesVossenkamper, A., Blair, P.A., Safinia, N., Fraser, L.D., Das, L., Sanders, T.J., Stagg, A.J., Sanderson, J.D., Taylor, K., Chang, F., Choong, L.M., D’Cruz, D.P., Macdonald, T.T., Lombardi, G., Spencer, J. (2013). A role for gutassociated lymphoid tissue in shaping the human B cell repertoire. J Exp Med. 210 (9): 1665-1674spa
dcterms.referencesWeill, J.C., Weller, S., Reynaud, C.A. (2009). Human marginal zone B cells. Annu Rev Immunol. 27: 267-285.spa
dcterms.referencesWeller, S., Braun, M.C., Tan, B.K., Rosenwald, A., Cordier, C., Conley, M.E., Plebani, A., Kumararatne, D.S., Bonnet, D., Tournilhac, O., Tchernia, G., Steiniger, B., Staudt, L.M., Casanova, J.L., Reynaud, C.A., Weill, J.C. (2004). Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood. 104 (12): 3647-3654.spa
dcterms.referencesWeller, S., Faili, A., Garcia, C., Braun, M.C., Le Deist, F.F., de Saint Basile, G.G., Hermine, O., Fischer, A., Reynaud, C.A., Weill, J.C. (2001). CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci USA. 98 (3): 1166-1170.spa
dcterms.referencesWeller, S., Mamani-Matsuda, M., Picard, C., Cordier, C., Lecoeuche, D., Gauthier, F., Weill, J.C., Reynaud, C.A. (2008). Somatic diversification in the absence of antigendriven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J Exp Med. 205 (6): 1331-1342.spa
dcterms.referencesWesemann, D.R., Portuguese, A.J., Meyers, R.M., Gallagher, M.P., Cluff-Jones, K., Magee, J.M., Panchakshari, R.A., Rodig, S.J., Kepler, T.B., Alt, F.W. (2013). Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 501 (7465): 112-115.spa
dcterms.referencesWirths, S. & Lanzavecchia, A. (2005). ABCB1 transporter discriminates human resting naive B cells from cycling transitional and memory B cells. Eur J Immunol. 35 (12): 3433-3441.spa
dcterms.referencesWu, Y.C., Kipling, D., Leong, H.S., Martin, V., Ademokun, A.A., Dunn-Walters, D.K. (2010). High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood. 116 (7): 1070-1078.spa
dcterms.referencesYates, J.L., Racine, R., McBride, K.M., Winslow, G.M. (2013). T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge. J Immunol. 191 (3): 1240-1249.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttp://orcid.org/0000-0001-6623-5337-
dc.subject.proposalCélulas B de memoriaspa
dc.subject.proposalMemory B cellseng
dc.subject.proposalIgMspa
dc.subject.proposalIgMeng
dc.subject.proposalRespuesta B Innataspa
dc.subject.proposalInnate B cell responseeng
dc.subject.proposalRespuesta B Adaptativaspa
dc.subject.proposalAdaptive B cell responseeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume40spa
dc.relation.citationstartpage8spa
dc.relation.citationendpage17spa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue154spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
2. Heterogeneidad de las células B de memoria IgM humanas.pdfCiencias Biomédicas277.88 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons