Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/919 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRíos, Carlos A.-
dc.contributor.authorCastellanos Alarcón, Oscar M.-
dc.contributor.authorCasadiego Q, Efraín-
dc.date.accessioned2021-11-15T13:16:31Z-
dc.date.available2021-11-15T13:16:31Z-
dc.date.issued2016-03-28-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/919-
dc.description.abstractLa mineralogía y la microestructura son variables claves que definen las propiedades físicas de una roca. Las lodolitas muestran distribuciones de tamaño de poro en la matriz inherentemente heterogéneas. Ellos pueden mostrar poros orgánicos e inorgánicos y el mecanismo de transporte a través de poros es diferente, y, por lo tanto, es necesario describir su porosidad orgánica e inorgánica. Este trabajo utiliza Microscopía Electrónica de Barrido de Fuente de Emisión de Campo para caracterizar las lodolitas del Miembro Galembo de la Formación La Luna del Cretácico, Cuenca del Valle Medio del Magdalena, Colombia. Hay varios tipos de poros en las lodolitas, incluyendo poros interpartículas debido a la floculación de minerales de arcilla, porosidad orgánica debida al enterramiento y madurez térmica de la materia orgánica, poros intrapartıculas de organismos, poros intrapartículas dentro de granos minerales, y microcanales y microfracturas, incluyendo disolución, relleno y fracturas entre capas. La existencia de poros interconectados en tal complejo sistema de poros-fracturas ofrece vías eficaces para la migración primariade gas y también proporciona un espacio de almacenamiento para el petróleo residual en las lodolitas, lo cual es importante para la migración primaria y almacenamiento de los recursos de gas asociado a lodolitas. La conectividad entre poros es alta y aumenta hacia la parte superior del Miembro Galembo.spa
dc.description.abstractMineralogy and microstructure are key variables defining the physical properties of a rock. Mudstones show inherently heterogeneous matrix pore-size distributions. They can show organic and inorganic pores and the transport mechanism through pores is different, and, therefore, it is necessary to describe their organic and inorganic porosity. This work uses Field Emission Gun Scanning Electron Microscopy to characterize the Galembo Member mudstones, Cretaceous La Luna Formation, Middle Magdalena Valley Basin, Colombia. There are several pore types in mudstones, including interparticle pores due to flocculation of clay minerals, organoporosity due to burial and thermal maturity of organic matter, intraparticle pores from organisms, intraparticle pores within mineral grains, and microchannels and microfractures, including dissolution, fillings and interlayer fractures. The existence of interconnected pores in such complex fracture-pore system provides effective pathways for primary gas migration and it also provides a storage space for the residual petroleum in mudstones, which is important for the primary migration and storage for mudstone gas resources. The pore connectivity is high and increases towards the top of the Galembo Member.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleMicrostructural characterization of pore types in unconventional gas reservoirs utilizing FEG-SEM: An example from the Galembo Member of the Cretaceous La Luna Formation, Middle Magdalena Valley Basin (Colombia)spa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAllen R.B., Alfonso, C.A., Ressetar, R., Salazar, A., Ballesteros, I., Cardozo, E., Laverde, F., Ramirez, C., Moreno, J.M., Rubiano, J. & Sarmiento, L. (1993). The Cretaceous stratigraphy of the Western Cordillera Oriental, Colombia. University of South Carolina, Columbia, South Carolina, United States. AAPG Bulletin 02, 77(2).spa
dcterms.referencesANH, 2008. Colombian Sedimentary Basins: Nomenclature, boundaries and petroleum geology, a new proposal, 92pspa
dcterms.referencesAguilera, R.C., Sotelo, V.A., Burgos, C.A., Arce, C., Gómez, C., Mojica, J., Castillo, H., Jiménez, D. & Osorno, J. (2009). Organic Geochemistry Atlas of Colombia: An Exploration Tool for Mature and Frontier Basins. Earth Sciences Research Journal 13, Special Edition 1-174spa
dcterms.referencesBallesteros, C.A. & Parra, J.A. (2012). Estudio estratigráfico secuencial para la Formación La Luna en el costado oriental de la Cueca del Valle Medio del Magdalena: Una visión exploratoria de hidrocarburos no covencionales. Tesis de Pregrado. Universidad Industrial de Santanderspa
dcterms.referencesBarrero, D., Pardo, A., Vargas, C. & Martínez, J. (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology. ANH and B&M Exploration Ltda 26-45spa
dcterms.referencesBennett, R.H., O’Brien, N.R. & Hulbert, M.H. (1991). Determinants of clay and shale microfabric signatures: processes and mechanisms, in Microstructure of Fine Grained Sediments: From Mud to Shale: Springer-Verlag, New York, p. 5-32.spa
dcterms.referencesBernal, L.A. (2009). Caracterización estratigráfica y petrográficad de la Formación La Luna en el Sector de El Tablazo, Valle Medio Del Magdalena. 10th Simposio Bolivariano - Exploracion Petrolera en las Cuencas Subandinas. Session: Aprendiendo del Pasado - Mirando Hacia El Futuro. ACGGP.spa
dcterms.referencesBernard, S., Wirth, R., Schreiber, A., Bowen, L., Aplin, A.C., Mathia, E.J., Schulz, H.M. & Horsfield, B. (2013). FIB-SEM and TEM investigations of an organic-rich shale maturation series from the lower Toarcian Posidonia Shale, Germany: Nanoscale pore system and fluid-rock interactions. In: Camp, W., Diaz, E., Wawak, B. (Eds.), Electron Microscopy of Shale Hydrocarbon Reservoirs. AAPG Memoir 102: 53-66spa
dcterms.referencesBjorlykke, K. (2013). Petroleum Geoscience from Sedimentary Environments to Rock Physics. Springer, p. 508.spa
dcterms.referencesBoles, J.R. & Franks, S.G. (1979). Clay diagenesis in Wilcox sandstones of southwestem Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology 49: 55-70spa
dcterms.referencesBrothers, L., Engel, M.H. & Krooss, B.M. (1991). The effects of fluid flow through porous media on the distribution of organic compounds in a synthetic crude oil. Organic Geochemistry 17: 11-24spa
dcterms.referencesBruce, C.H. (1982). Relation of Illite/Smectite Diagenesis and Development of Structure in the Northern Gulf of Mexico Basin. Abstract, AAPG Bulletin 66 (9), pp.1443spa
dcterms.referencesCasadiego, E. (2014). Caracterización de reservorios de gas shale integrando datos multiescala: Caso estudio Miembro Galembo, Sección Aguablanca, Cuenca del Valle Medio del Magdalena. Tesis de Maestría, Universidad Industrial de Santander, Colombiaspa
dcterms.referencesChalmers, G.R.L., Bustin, R.M. & Power, I.M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin 96 (6): 1099-1119spa
dcterms.referencesChen, Sh., Zhu, Y., Wang, H., Liu, H., Wei, W. & Fang, J. (2011). Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 36: 6609-6616spa
dcterms.referencesCurtis, J.B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86 (11): 1921-1938spa
dcterms.referencesCurtis, M.E., Ambrose, R.J., Sondergeld, C.H. & Rai, Ch.S.(2012a). Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin 96 (4): 665-677.spa
dcterms.referencesCurtis, M.E., Cardott, B.J., Sondergeld, C.H. & Rai, Ch.S.(2012b). Development of organic porosity in the Woodford Shale with increasing thermal maturity. International Journal of Coal Geology 103: 26-31.spa
dcterms.referencesDay-Stirrat, R., Aplin, A., Środoń, J. & Van der Pluijm, B.(2008). Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland. Clays and Clay Minerals 56: 100-111spa
dcterms.referencesDelle Piane, C., Almqvist, B.S.G., MacRae, C.M., Torpy, A., Mory, A.J. & Dewhurst, D.N. (2015). Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties. Marine and Petroleum Geology 59: 56-71spa
dcterms.referencesGale, J.F.W. & Holder, J. (2010). Natural fractures in some U.S. shales and their importance for gas production. Geological Society, London, Petroleum Geology Conference Series 7:1131-1140spa
dcterms.referencesGarner, A.H. (1926). Suggested nomenclature and correlation of the geological formations in Venezuela. American Institute of Mining and Metallurgy Engineers Transactions 1: 677-684.spa
dcterms.referencesGuo, Ch., Bai, B., Wei, M., He, X. & Wu, Y.-S. (2013). Study on Gas Permeability in Nano Pores of Shale Gas Reservoirs. Colorado School of Mines SPE 167179 (1-11).spa
dcterms.referencesHedberg, H.D. & Sass, L.C. (1937). Synopsis de las formaciones geológicas de la parte occidental de la Cuenca de Maracaibo, Venezuela. Servicio Técnico de Geología y Minería, Caracas, Boletín de Geología y Mineralogía (Venezuela) 2-4: 83-84spa
dcterms.referencesHill, R.J., Zhang, E., Katz, B.J. & Tang, Y. (2007). Modeling of gas generation from the Barnett shale, Fort Worth Basin, Texas. AAPG Bulletin 91 (4): 501-521spa
dcterms.referencesHo, N., Peacor, D. & Van der Pluijm, B. (1999). Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition. Clays and Clay Minerals 47: 495-504spa
dcterms.referencesHubach, E. (1957). Estratigrafía de la Sabana de Bogotá y alrededores. Instituto Geológico Nacional, Boletín Geológico 5 (2): 93-112spa
dcterms.referencesJarvie, D., Hill, R.J., Ruble, T.E. & Pollastro, R.M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin 91 (4): 475-499spa
dcterms.referencesJensen, L.A., Sanchez-Ferrer, F., Pliego-Vidal, E., Goudy, C. & Kertznus, V. (2013). Unconventional exploration potential of the Colombian basins: Perspectives from regional geology and structural evolution. AAPG International Conference (Cartagena, Colombia, 9/8-11/2013). Abstracts.spa
dcterms.referencesJiao, K., Yao, S., Liua, Ch., Gao, Y., Wua, H., Li, M. & Tang, Z. (2014). The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM–FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China. International Journal of Coal Geology 128-129: 1-11.spa
dcterms.referencesJosh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, D.N. & Clennell M.B. (2012). Laboratory characterisation of shale properties. Journal of Petroleum Science and Engineering 88-89: 107-124spa
dcterms.referencesKingston, D., Dishroon, C. & Williams, P. (1983). Global basin classification system: AAPG Bulletin 67 (12): 2175-2213spa
dcterms.referencesLafargue, E. & Barker, C. (1988). Effect of water washing on crude oil compositions. AAPG Bulletin 72 (3): 263-276.spa
dcterms.referencesLash, G.G. & Blood, D. (2004). Geochemical and textural evidence for Early (shallow) diagenetic growth of strati-graphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York. Chemical Geology 206 (3-4): 407-424spa
dcterms.referencesLee, D., Herman, J.D., Elsworth, D., Kim, H.T. & Lee, H.S.(2011). A critical evaluation of unconventional gas recov-ery from the Marcellus Shale, Northeastern United States. KSCE Journal of Civil Engineering 15 (4): 679-687.spa
dcterms.referencesLoucks, R.G., Reed, R.M., Ruppel, S.C. & Jarvie, D.M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research 79: 848-861spa
dcterms.referencesLoucks, R.G., Reed, R.M., Ruppel, S.C. & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin 96 (6): 1071-1098.spa
dcterms.referencesLu, X.-C., Li, F.-C. & Watson, A.T. (1995). Adsorption measurements in Devonian shales. Fuel 74: 599-603spa
dcterms.referencesMeulbroek, P., Cathles, L.M. & Whelan, J. (1998). Phase fractionation in South Eugene Island Block 330. Organic Geochemistry 29: 223-239spa
dcterms.referencesMilliken, K.L. & Reed, R.M. (2010). Multiple causes of diagenetic fabric anisotropy in weakly consolidated mud, Nankai Accretionary Prism, IODP Expedition 316: Journal of Structural Geology 32: 1887-1898spa
dcterms.referencesMilliken, K.L., Rudnicki, M., Awwiller, D.N. & Zhang, T.(2013). Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin 97 (2): 177-200spa
dcterms.referencesModica, C.J. & Lapierre, S.G. (2012). Estimation of kerogen porosity in source rocks as a function of thermal transfor-mation: example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin 96 (1): 87-108.spa
dcterms.referencesMondol, N.H., Bjorlykke, K., Jahren, J. & Hoeg, K. (2007). Experimental mechanical compaction of clay mineral aggregates e changes in physical properties of mudstones during burial. Marine and Petroleum Geology 24: 289-311spa
dcterms.referencesMontgomery, S. (1992). Petroleum potential of Upper and Middle Magdalena basins, Colombia. Petroleum Frontiers 9 (3), 67p.spa
dcterms.referencesMontgomery, S.L., Jarvie, D.M., Bowker, K.A. & Pollastro, R.M. (2005). Mississippian Barnett Shale, FortWorth Basin, north-central Texas: gas-shale play with multitrillion cubic foot potential. AAPG Bulletin 89 (2): 155-175spa
dcterms.referencesMoore, C.H. (1997). Carbonate diagenesis and porosity. Developments in Sedimentology 46, 338p.spa
dcterms.referencesMorales, L.G., Podesta, D.J., Hatfield, W.C., Tanner, H., Jones, S.H., Barker, M.H., O’Donoghue, D.J., Mohler, C.E., Dubois, E.P., Jacobs, C. & Goss, C.R. (1958). General Geology and oil occurrences of the Middle Magdalena Valley, Colombia. In: Weeks, L.G. (Eds.), Habitat of Oil Symposium. AAPG 41: 641-695spa
dcterms.referencesO’Brien, N.R. & Slatt, R.M. (1990). The fabrics of shales and mudstone; an overview. In: Burst, J.F., Johns W.D. (chairs). Clay Minerals Society, 27th annual meeting, program and abstracts: Clay Minerals Annual Conference 27, 99p.spa
dcterms.referencesRangel, A., Giraldo, B., Munar, R., Olaya, I., García, M., Gutierrez, J., Parra, P. & Niño, Ch. (2000ª). Estratigrafía química y facies orgánicas del Terciario Inferior y Cretácico Superior del Piedemonte Llanero y Valle Oriental del Magdalena. Internal Report ECOPETROL- ICPspa
dcterms.referencesRangel, A., Parra, P. & Niño, C. (2000b). The La Luna Formation: chemostratigraphy and organic facies in the Middle Magdalena Basin. Organic Geochemistry 31 (12): 1267-1284spa
dcterms.referencesRamón, J.C., Dzou, L. & Giraldo, B. (1997). Geochemical evaluation of the Middle Magdalena Basin, Colombia. CT&F - Ciencia, Tecnología y Futuro 1 (3): 47-66.spa
dcterms.referencesRamon, J.C. & Dzou, L.I. (1999). Petroleum geochemistry of the Middle Magadalena Valley: Colombia. Organic Geochemitry 30 (4): 249-266spa
dcterms.referencesReyes, J.P. (1996). Oil potential of the Cretacic megasequence and associated oil families in the Middle Magdalena Valley, Colombia. Memorias del V Congreso Latinoamericano de Geoquímica Orgánica, Cancún, p.105.spa
dcterms.referencesReyes, J.P., Fajardo, A., Mantilla, M. & Barragán, M. (2000). Secuencia Calcárea del Cretáceo del Valle Medio Del Magdalena, Colombia. Una Nueva Frontera Exploratoria ACGGPspa
dcterms.referencesRitter, U. (2003). Solubility of petroleum compounds in kerogen: implications for petroleum expulsion. Organic Geochemistry 34: 319-326spa
dcterms.referencesRitter, U. & Grover, A. (2005). Adsorption of petroleum com-pounds in vitrinite: implications for petroleum expulsion from coal. International Journal of Coal Geology 62: 183-191spa
dcterms.referencesRodríguez, J.C. (2013). Challenges and opportunities for the development of Shale resources in Colombia. MSc thesis, The University of Texas, Austinspa
dcterms.referencesRomero-Sarmiento, M.F., Ducros, M., Carpentier, B., Lorant, F., Cacas, M. Ch., Pegaz-Fiornet, S., Wolf, S., Rohais, S. & Moretti, I. (2013). Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale. Marine and Petroleum Geology 45: 315-330spa
dcterms.referencesRomero-Sarmiento, M.F., Rouzaud, J.N., Bernard, S., Deldicque, D., Thomas, M. & Littke, R. (2014). Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation. Organic Geochemistry 71: 7-16.spa
dcterms.referencesRoss, D.J.K. & Bustin, R.M. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology 26:916-927spa
dcterms.referencesRoyero, J.M. & Clavijo, J. (2001). Memoria Explicativa Mapa Geológico Generalizado Departamento de Santander, escala 1:400.00. INGEOMINAS, Bogotáspa
dcterms.referencesSchamel, S. (1991). Middle and Upper Magdalena Basins, Colombia. In: Biddle, K.T. (Eds.), Active Margin Basins. AAPG Memoir 52: 283-301spa
dcterms.referencesSlatt, R.M. & O’Brien, N.R. (2011). Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine grained rocks. AAPG Bulletin 95 (12): 2017-2030spa
dcterms.referencesSlatt, R.M., Philip, P., Abousleiman, Y., Singh, P., Perez, R., Portas, K., Marfurt, J., Madrid-Arroyo, N., O ́Brien, E., Eslinger, V. & Baruch, E. (2012). Pore-to-regional-scale, integrated characterization workflow for unconventional gas shales. In: Breyer, J. (Eds.), Shale reservoirs-Giant resources for the 21st century, AAPG Memoir 97: 127-150spa
dcterms.referencesSun, Y., Lu, X.C., Shu, L.S. $& Liu, H. (2008). Observation & determination of the nano-sized particle layer in rocks and its geological significance. Journal of Geomechanics 14 (1): 37-44spa
dcterms.referencesTorres, E.J. (2013). Unconventional gas shale assessment of La Luna Formation in the central and south areas of the Middle Magdalena Valley Basin, Colombia. MSc thesis, University of Oklahoma, Normanspa
dcterms.referencesTorres, E.J., Slatt, R.M., Philp, P. Brien, N.R.O. & Rodríguez, H.L. (2015). Unconventional resources assessment of La Luna Formation in the Middle Magdalena Valley Basin, Colombia. AAPG Annual Convention & Exhibition, Denver, Colorado, May 31-June 3, 2015spa
dcterms.referencesVermylen, J.P. (2011). Geomechanical Studies of the Barnett Shale, Texas, USA. PhD thesis, Stanford University, Stanford.spa
dcterms.referencesWard D.E., Goldsmith R., Jimeno V., Cruz B.J., Restrepo H. & Gómez, R. (1969). Mapa Geológico del Cuadrángulo H-12, Bucaramanga, Colombia. Ingeominasspa
dcterms.referencesWarlick, D. (2006). Gas shale and CBM development in North America. Oil and Gas Financial Journal 3 (11): 1-5spa
dcterms.referencesWeniger, P., Kalkreuth, W., Busch, A. & Krooss, B.M. (2010). High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil. International Journal of Coal Geology 84: 190-205spa
dcterms.referencesWilliams, K.E. (2012). The Permeability of Overpressure Shale Seals and of Source Rock Reservoirs is the Same. AAPG 2012 Annual Convention and Exhibition, Long Beach, California, 22-25 April.spa
dcterms.referencesYao, S.P., Jiao, K., Zhang, K., Hu, W.X., Ding, H., Li, M.Ch. & Pei, W.M. (2011). An atomic force microscopy study of coal nanopore structure. Chinese Science Bulletin 56 (25): 2706-2712spa
dcterms.referencesZhang, T.W., Ellis, G.S., Rupple, S.C., Milliken, K. & Yang, R. (2012). Effect of organic matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry 47: 120-131spa
dcterms.referencesZumberge, J. (1984). Source Rocks of the La Luna Formation (Upper Cretaceous) in the Middle Magdalena Valley, Colombia. In: Palacas J. (Eds.), Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. AAPG Studies in Geology 18: 127-133spa
dcterms.referencesZumberge, J., Ferworn, K. & Brown, S. (2012). Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Marine and Petroleum Geology 31: 43-52.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.243-
dc.subject.proposalLodolitasspa
dc.subject.proposalMudstoneseng
dc.subject.proposalMicroestructuralspa
dc.subject.proposalMicrostructuraleng
dc.subject.proposalPorosidadspa
dc.subject.proposalPorosityeng
dc.subject.proposalMiembro Galembospa
dc.subject.proposalGalembo Membereng
dc.subject.proposalFormación La Lunaspa
dc.subject.proposalLa Luna Formationeng
dc.subject.proposalCuenca del Valle Medio del Magdalenaspa
dc.subject.proposalMiddle Magdalena Valley Basineng
dc.subject.proposalColombiaspa
dc.subject.proposalColombiaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume40spa
dc.relation.citationstartpage161spa
dc.relation.citationendpage175spa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionCuenca del Valle Medio del Magdalena (Colombia)-
dc.relation.citationissue154spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Microstructural characterization of pore types in unconventional.pdfCiencias de la tierra1.37 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons