Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/927 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCadena, Carlos D.-
dc.contributor.authorPedraza, Carlos A.-
dc.contributor.authorBrumfield, Robb T.-
dc.date.accessioned2021-11-15T14:18:59Z-
dc.date.available2021-11-15T14:18:59Z-
dc.date.issued2016-07-03-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/927-
dc.description.abstractEn contraste con la visión tradicional de que el levantamiento de los Andes impulsó la diversificación biótica causando vicarianza en varios grupos con distribuciones que antes eran continuas, investigaciones recientes sugieren que eventos de dispersión a través de los Andes sucedidos después de los principales episodios de levantamiento fueron catalizadores principales de la especiación en aves neotropicales, y que la habilidad de los linajes para persistir y dispersarse en el paisaje predice fuertemente los patrones de especiación. Sin embargo, se desconoce cuándo y dónde sucedieron dichos eventos de dispersión, y el papel de las fluctuaciones climáticas y el consecuente desplazamiento de la vegetación como promotores de la dispersión a través de los Andes en distintos momentos no ha sido estudiado. Empleamos modelos de la distribución potencial de especies basados en datos de clima actual e histórico para examinar escenarios de dispersión a través de los Andes en 41 especies de aves neotropicales de tierras bajas con diferentes afinidades de hábitat. Nuestros resultados indican que la conectividad ecológica que favorecería la dispersión a través de los Andes en el presente es mayor en pasos bajos de la cordillera del sur de Ecuador y el norte de Perú que en pasos bajos de Colombia, y este patrón espacial parece haberse mantenido en cuatro momentos diferentes de los últimos 130,000 años. También encontramos que aunque algunas áreas actualmente no serían propicias para la dispersión de las aves a través de los Andes, bajo condiciones climáticas del pasado (i.e. durante períodos más fríos y secos) presentaron condiciones climáticas sustancialmente más idóneas para permitir la conectividad ecológica de poblaciones a través de la cordillera. No encontramos diferencias consistentes en la conectividad ecológica presente y pasada a través de los Andes entre especies de diferentes tipos de hábitat. Sugerimos que los valles andinos impulsan la diversificación evolutiva no solo porque aíslan las poblaciones de especies de montaña, sino porque permiten la dispersión episódica de especies de las tierras bajas. Nuestros modelos permiten hacer predicciones sobre flujo genético que pueden ser evaluadas en estudios futuros que examinen patrones de intercambio genético a escala fina usando herramientas de genética del paisaje.spa
dc.description.abstractContrary to the long-held view that the uplift of the Andes spurred biotic diversification by causing vicariance across multiple lineages with formerly continuous distributions, recent work suggests that dispersal across the Andes occurring after major uplift episodes was a major driver of speciation in Neotropical birds, with the ability of lineages to persist and disperse in the landscape being strong predictors of speciation. However, where and when dispersal events across the Andes occurred is unknown, and the role of climatic fluctuations and associated shifts in vegetation in promoting cross-Andes dispersal at different moments remains to be studied. We used models of species potential distributions based on contemporary and historical climatic data to examine scenarios of cross-Andes dispersal by 41 species of Neotropical lowland birds with varying habitat affinities. Our results indicate that ecological connectivity favoring cross-Andes dispersal at the present is higher in low-lying passes across the Andes of southern Ecuador and northern Peru than in passes in Colombia, and this spatial pattern appears to have been consistent at four different moments over the past 130,000 years. We also found that although some areas may be presently unsuitable for the dispersal of birds across the Andes, under past climatic conditions (i.e. during cooler and drier periods) they were substantially more likely to allow for ecological connectivity of populations across the cordillera. No consistent differences were found in ecological connectivity across the Andes in the present nor in the past for species occupying different habitat types. We suggest that valleys in the Andes are major drivers of evolutionary diversification not only by isolating populations of montane species, but also by allowing episodic dispersal of lowland species. Our models allow us to make predictions about gene flow which may be assessed in future studies examining fine-grain patterns of genetic exchange with landscape genetics tools.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleClimate, habitat associations and the potential distributions of Neotropical birds: Implications for diversification across the Andesspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesWest W., West G.S., Carter N. 1923. A Monograph of the British Desmidiaceae. Vol. 5. The Ray Society. London. p. 299spa
dcterms.referencesAntonelli, A., Quijada-Mascareñas, A., Crawford, A.J., Bates, J.M., Velazco, P.M., Wüster, W. 2010. Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models. In: Hoorn, C. and Wesselingh, F.P., eds. Amazonia, landscape and species evolution: a look into the past: Wiley-Blackwell. 386-404spa
dcterms.referencesBacon, C.D., Molnar, P., Antonelli, A., Crawford, A.J., Montes, C., Vallejo-Pareja, M.C. 2016. Quaternary glaciation and the Great American Biotic Interchange. Geology 44: 375-378spa
dcterms.referencesBacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P., Antonelli, A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences of the USA 112: 6110-6115.spa
dcterms.referencesBates, J.M., Tello, J.G., Silva, J.M.C. 2003. Initial assessment of genetic diversity in ten bird species of South American cerrado. Studies on Neotropical Fauna and Environment38: 87-94spa
dcterms.referencesBell, R.C., Parra, J.L., Tonione, M., Hoskin, C.J., Mackenzie, J.B., Williams, S.E., Moritz, C. 2010. Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. Molecular Ecology19: 2531-2544spa
dcterms.referencesBonaccorso, E., Koch, I., Peterson, A.T. 2006. Pleistocene fragmentation of Amazon species’ ranges. Diversity and Distributions 12: 157-164spa
dcterms.referencesBraconnot, P., Otto-Bliesner, B., Harrison, S., Joussame, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C.D., Kageyama, M., Kitoh, A., Lainé, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S.L., Yu, Y., Zhao, Y. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum. 1. Experiments and large-scale features. Climate of the Past 3: 261-277spa
dcterms.referencesBrumfield, R.T., Capparella, A.P. 1996. Historical diversification of birds in northwestern South America: a molecular perspective on the role of vicariant events. Evolution 50:1607-1624spa
dcterms.referencesBurney, C.W., Brumfield, R.T. 2009. Ecology predicts levels of genetic differentiation in Neotropical birds. American Naturalist 174: 358-368spa
dcterms.referencesCadena, C.D., Gutiérrez-Pinto, N., Dávila, N., Chesser, R.T. 2011. No population genetic structure in a widespread aquatic songbird from the Neotropics. Molecular Phylogenetics and Evolution 58: 540-545spa
dcterms.referencesCarnaval, A.C., Hickerson, M.J., Haddad, C.F.B., Rodrigues, M.T., Moritz, C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323: 785-789.spa
dcterms.referencesCarstens, B.C., Richards, C.L. 2007. Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution 61: 1439-1454spa
dcterms.referencesChapman, F.M. 1917. The distribution of bird life in Colombia. Bulletin of the American Museum of Natural History 36:1-169spa
dcterms.referencesChapman, F.M. 1926. The distribution of bird-life in Ecuador. Bulletin of the American Museum of Natural History55:1-784spa
dcterms.referencesCheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d’Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S. 2013. Climate change patterns in Amazonia and biodiversity. Nature Communications 1: 1411-1416spa
dcterms.referencesCheviron, Z.A., Hackett, S.J., Capparella, A.P. 2005. Complex evolutionary history of a Neotropical lowland forest bird (Lepidothrix coronata) and its implications for historical hypotheses of the origin of Neotropical avian diversity. Molecular Phylogenetics and Evolution 36: 338-357spa
dcterms.referencesDick, C.W., Roubik, D.W., Gruber, K.F., Bermingham, E. 2004. Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology 13: 3775-3785.spa
dcterms.referencesFielding, A.H., Bell, J.F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38-49.spa
dcterms.referencesFlantua, S.G.A., Hooghiemstra, H., Van Boxel, J.H., Cabrera, M., González-Carranza, Z., González-Arango, C. 2014. Connectivity dynamics since the Last Glacial Maximum in the northern Andes; a pollen-driven framework to assess potential migration. In: Stevens, W.D., Montiel, O.M. and P., R., eds. Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year. St. Louis, MO, USA: Missouri Botanical Garden Press. 98-123spa
dcterms.referencesGuisan, A., Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters8: 993-1009spa
dcterms.referencesGustafson, E.J., Parker, G.R. 1992. Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecology 7: 101-110.spa
dcterms.referencesHaffer, J. 1967a. Speciation in Colombian forest birds west of the Andes. American Museum Novitates 2294: 1-57spa
dcterms.referencesHaffer, J. 1967b. Zoogeographical notes on the “nonforest” lowland bird faunas of northwestern South America. Hornero 10: 315-333.spa
dcterms.referencesHaffer, J. 1969. Speciation in Amazonian forest birds. Science165: 131-137spa
dcterms.referencesHaffer, J. 1974. Avian speciation in tropical South America with a systematic survey of the toucans (Ramphastidae) and the jacamars (Galbulidae). Nuttall Ornithological Club: Cambridge, Massachusettsspa
dcterms.referencesHaffer, J., Prance, G.T. 2001. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16: 579-607spa
dcterms.referencesHijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology25: 1965-1978.spa
dcterms.referencesHooghiemstra, H., Wijninga, V.M., Cleef, A.M. 2006. The paleobotanical record of Colombia: implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden 93: 297-324spa
dcterms.referencesHoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., Antonelli, A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927-931spa
dcterms.referencesHugall, A., Moritz, C., Moussalli, A., Stanisic, J. 2002. Reconciling paleodistribution models and comparative phylogeography in the wet tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proceedings of the National Academy of Sciences of the USA 99: 6112-6117spa
dcterms.referencesHughes, C., Eastwood, R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences of the USA 103: 10334-10339.spa
dcterms.referencesHutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-442.spa
dcterms.referencesKrabbe, N. 2008. Arid valleys as dispersal barriers to high-Andean forest birds in Ecuador Cotinga 29: 28-30.spa
dcterms.referencesKukla, G.J., Bender, M.L., de Beaulieu, J.-L., Bond, G., Broecker, W.S., Cleveringa, P., Gavin, J.E., Herbert, T.D., Imbrie, J., Jouzel, J., Keigwin, L.D., Knudsen, K.L., McManus, J.F., Merkt, J., Muhs, D.R., Müller, H., Poore, R.Z., Porter, S.C., Seret, G., Shackleton, N.J., Turner, C., Tzedakis, P.C., Winograd, I.J. 2002. Last Interglacial climates. Quaternary Research 58: 2-13.spa
dcterms.referencesMarchant, R., Boom, A., Behling, H., Hooghiemstra, H., Melief, B., Van Geel, B., Van der Hammen, T., Wille, M. 2004. Colombian vegetation at the Last Glacial Maximum: a comparison of model- and pollen-based biome reconstructions. Journal of Quaternary Science 19:721-732spa
dcterms.referencesMarchant, R., Cleef, A., Harrison, S.P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., Almeida, L., Anderson, R., Baied, C., Behling, H., Berrio, J.C., Burbridge, R., Björck, S., Byrne, R., Bush, M., Duivenvoorden, J., Flenley, J., De Oliveira, P., van Geel, B., Graf, K., Gosling, W.D., Harbele, S., van der Hammen, T., Hansen, B., Horn, S., Kuhry, P., Ledru, M.-P., Mayle, F., Leyden, B., Lozano-García, S., Melief, A.M., Moreno, P., Moar, N.T., Prieto, A., van Reenen, G., Salgado-Labouriau, Schäbitz, F., Schreve-Brinkman, E.J., Wille, M. 2009. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate of the Past 5: 725-767.spa
dcterms.referencesMartínez-Meyer, E., Peterson, A.T. 2006. Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-Recent transition. Journal of Biogeography 33: 1779-1789.spa
dcterms.referencesMartínez-Meyer, E., Peterson, A.T., Hargrove, W.W. 2004. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 13: 305-314spa
dcterms.referencesMcRae, B.H. 2006. Isolation by resistance. Evolution 60: 1551-1561.spa
dcterms.referencesMcRae, B.H., Beier, P. 2007. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences of the USA 104: 19885-19890spa
dcterms.referencesMcRae, B.H., Dickson, B.G., Keitt, T.H., Shah, V.B. 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89: 2712-2724spa
dcterms.referencesMiller, A.H. 1952. Supplementary data on the tropical avifauna of the arid upper Magdalena Valley of Colombia. Auk 69:450-457.spa
dcterms.referencesMiller, M.J., Bermingham, E., Klicka, J., Escalante, P., Amaral, F.S.R., Weir, J.T., Winker, K. 2008. Out of Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest flycatcher. Proceedings of the Royal Society of London B 275: 1133-1142spa
dcterms.referencesNogués-Bravo, D. 2009. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography 18:521-531.spa
dcterms.referencesNores, M. 1999. An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography 26:475-485.spa
dcterms.referencesOtto-Bliesner, B.L., Marshall, S.J., Overpeck, J.T., Miller, G.H., Hu, A., members, C.L.I.P. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311: 1751-1753.spa
dcterms.referencesPaynter, R.A., Jr. 1997. Ornithological gazetteer of Colombia, second edition. Museum of Comparative Zoology, Harvard University: Cambridge, Massachusettsspa
dcterms.referencesPeterson, A.T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78: 419-433.spa
dcterms.referencesPeterson, A.T. 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography38: 817-827.spa
dcterms.referencesPeterson, A.T., Soberón, J., Sánchez-Cordero, V. 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265-1267spa
dcterms.referencesPhillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259spa
dcterms.referencesPulgarín-R., P.C., Burg, T.M. 2012. Genetic signals of demographic expansion in Downy Woodpecker (Picoides pubescens) after the last North American glacial maximum. PloS One 7: e40412.spa
dcterms.referencesRibas, C.C., Aleixo, A., Nogueira, A.C.R., Miyaki, C.Y., Cracraft, J. 2012. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society of London B 279:681-689.spa
dcterms.referencesRidgely, R.S., Allnutt, T.F., Brooks, T., McNicol, D.K., Mehlman, D.W., Young, B.E., Zook, J.R. 2005. Digital distribution maps of the birds of the Western Hemisphere, version 2.1. NatureServe: Arlington, Virginia, USAspa
dcterms.referencesRobin, V.V., Vishnudas, C.K., Gupta, P., Ramakrishnan, U. 2015. Deep and wide valleys drive nested phylogeographic patterns across a montane bird community. Proceedings of the Royal Society of London B 282: 20150861spa
dcterms.referencesRuegg, K.C., Hijmans, R.J., Moritz, C. 2006. Climate change and the origin of migratory pathways in the Swainson’s thrush, Catharus ustulatus. Journal of Biogeography 33:1172-1182spa
dcterms.referencesSmith, B.T., Amei, A., Klicka, J. 2012. Evaluating the role of contracting and expanding rainforest in initiating cycles of speciation across the Isthmus of Panama. Proceedings of the Royal Society of London B. 279: 3520-3526spa
dcterms.referencesSmith, B.T., McCormack, J.E., Cuervo, A.M., Hickerson, M.J., Aleixo, A., Cadena, C.D., Pérez-Emán, J., Burney, C.W., Xie, X., Harvey, M.G., Faircloth, B.C., Glenn, T.C., Derryberry, E.P., Prejean, J., Fields, S., Brumfield, R.T. 2014. The drivers of tropical speciation. Nature. 515: 406-409spa
dcterms.referencesStotz, D.F., Fitzpatrick, J.W., Parker, T.A.I., Moskovits, D.K. 1996. Neotropical birds: ecology and conservation. The University of Chicago Press: Chicagospa
dcterms.referencesSua, S., Mateus, R.D., Vargas, J.C. 2004. Georreferenciación de registros biológicos y gacetero digital de localidades. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombiaspa
dcterms.referencesTingley, M.W., Monahan, W.B., Beissinger, S.R., Moritz, C. 2009. Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences of the USA 106 (Suppl. 2): 19637-19643spa
dcterms.referencesWallace, A.R. 1852. On the monkeys of the Amazon. Proceedings of the Zoological Society of London 20: 107-110.spa
dcterms.referencesWinger, B.M., Bates, J.M. 2015. The tempo of trait divergence in geographic isolation: Avian speciation across the Marañon Valley of Peru. Evolution 69: 772-787.spa
dcterms.referencesZuloaga, J., Kerr, J.T. 2016. Over the top: do thermal barriers along elevation gradients limit biotic similarity? Ecographyin pressspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.280-
dc.subject.proposalLevantamiento andinospa
dc.subject.proposalAndean uplifteng
dc.subject.proposalCambio climáticospa
dc.subject.proposalClimatic changeeng
dc.subject.proposalaislamiento por resistenciaspa
dc.subject.proposalIsolation by resistanceeng
dc.subject.proposalBosques de tierras bajasspa
dc.subject.proposalLowland foresteng
dc.subject.proposalEspeciaciónspa
dc.subject.proposalSpeciationeng
dc.subject.proposalModelos de distribución de especiesspa
dc.subject.proposalSpecies distribution modelseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume40spa
dc.relation.citationstartpage275spa
dc.relation.citationendpage287spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.coverage.regionAndes colombianos-
dc.relation.citationissue155spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
8. Climate, habitat associations and the potential distributions.pdfCiencias naturales751.85 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons