Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/933 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChejne J, Farid-
dc.date.accessioned2021-11-15T14:23:59Z-
dc.date.available2021-11-15T14:23:59Z-
dc.date.issued2016-07-03-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/933-
dc.description.abstractSe presenta una descripción de la forma como se afronta el problema de la abstracción mental, necesaria para el desarrollo de un modelo matemático, capaz de describir los fenómenos que rigen el comportamiento de la dinámica de procesos naturales, ante perturbaciones externas al sistema. Una breve revisión desde la dinámica fundamental de Liuoville en la escala cuántica y microscópica, hasta las ecuaciones de balance a escala macroscópica o ecuaciones de Navier-Stokes se ilustra en este artículo. Se resalta el hecho que dividir magnitudes físicas como la velocidad en dos partes, genera la posibilidad de saltar de un escala a otra y se reduce la complejidad y los grados de libertad. La complejidad, se construye a partir de unidades simples; de esta manera, los modelos se consideran una abstracción de la realidad en la que se le asigna una ecuación matemática en diferentes escalas, tanto temporal como espacial, para explicar cómo la naturaleza se comporta y cómo ella se moldea para lograr sus caprichosas formas. La naturaleza toma forma, respetando leyes que rigen su comportamiento ante la influencia ajena y hacen que los eventos naturales se orienten a través de la repetición de una unidad oculta, modificando la forma para adaptase, actuando con el menor gasto energético posible.spa
dc.description.abstractA description of how everyone does abstractions to develop a mathematical model is presented; as well as the ability to describe the behaviour of nature processes dynamic when there are external perturbations. The aim of this work is to find the balance equation, starting from the classical Liouville equation on the microscopic scale until the balance equations on a macroscopic scale or Navier-Stokes equations. By dividing physical quantities such as velocity in two parts, one of which related to the average value and the other one with the fluctuation; it is possible to jump from one scale to another and reduces complexity. At this point, the complexity is constructed from simple units; therefore, the models are considered reality abstractions based on a mathematical equation formulated at different levels, both on time and space; as consequence, nature takes its shape due to the external influence, without forget the nature laws, by modifying the shape, adapting and looking for the less energy demand.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleUna aproximación a la construcción de modelos matemáticos para la descripción de la naturalezaspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesBell, A. D. (1986). The simulation of branching patterns in modular organisms. Philos. Trans. Royal Society London, Ser. B, 313: 143-169.spa
dcterms.referencesBejan, A. (2000). Shape and Structure, from Engineering to Nature. Cambridge University Pressspa
dcterms.referencesBejan, A. (1997). Advanced Engineering Thermodynamics. John Wiley and Sons.spa
dcterms.referencesBejan, A. (2005). The Constructal Law of Organization in Nature: Tree – Shaped Flow and Body Size. The Journal of Experimental Biology, 208: 1677-1686.spa
dcterms.referencesBhattacharya, A., Purohit, P. (2004). Predicting reaction rates for non-catalytic fluid–solid reactions in presence of structural changes in the solid phase. Chemical Engineering Journal, 102 (2): 141-149spa
dcterms.referencesByron Bird R., Warren E. Stewart, E. N. Lightfoot, (2002). Fenómenos de Transporte. United State: John Wiley & Sons.spa
dcterms.referencesCallen H. B., Welton, T. A. (1951), Irrevarsibility and Genralized Noise. Physical Review 83: 1spa
dcterms.referencesChejne, F., Hernández, J. P. W., Florez W.F. and Hill, A.F.J.(2000). Modelling and simulation of time-dependent coal combustion processes in stacks. Fuel 79: 987-997.spa
dcterms.referencesChejne, F., Hernández, J. P. (2002). Modelling and Simulation of Coal Gasification Process in Fludized Bed. Fuel, v. 81 p.1687-1702spa
dcterms.referencesChejne, F., Ragimova, T., Florez, W.F., Hernández, J.P. (2002). Theoretical Model for heat transfer in the single crystal making. Revista de La Facultad de Ingeniería Universidad de Antioquia. ISSN: 01202064 v. Junio, (26) p.79-89spa
dcterms.referencesChejne, F., Lopera, E., Londoño, C.A. (2011). Modelling and simulation of a coal gasification process in pressurized fluidized bed. Fuel; 90: 399-411spa
dcterms.referencesChejne, F., Macías, A., Estrada, D., Velasquez, H. I., Londoño, C. A. (2011), Radiation model for predicting temperature evolution in solar cooker, DYNA ISSN 0012-7353,Nro 166, pp 68-74, Medellin, Abrilspa
dcterms.referencesChejne F., F. Moukalled, C. A. Gómez (2013). A Simple Derivation of Crooks Relation; International Journal of Thermodynamics (IJoT), ISSN 1301-9724/e-ISSN 2146-1511, Vol. 16 (No 3), pp 97-101spa
dcterms.referencesChejne, F., Camargo. D.A., Pabón E., CarrascoMarín, F. (2015). Effect on mass transference phenomena by textural change inside monolithic carbon aerogels. Editor and place of publication: 14321181, 09477411 Heat Mass Transfer, Germany, January.spa
dcterms.referencesDe Groot S. R. (1968). Termodinámica de los Procesos Irrever-sibles. Madrid: Alhambra, p 268.spa
dcterms.referencesEinstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat; Annalen der Physik 17: 549-560.spa
dcterms.referencesEran, S., M. Michael and L. S. Harry, (1986). Philosophical Transactions of the Royal Society of London, Series B, 313, pp. 143-169.spa
dcterms.referencesEspañol, P. (2013). The Micro-Meso connection also known as Non-equilibrium Statistical Mechanics also known as The Theory of Coarse-Graining. Lecture notes at UAM, Madrid, España, Noviembrespa
dcterms.referencesFalola, A., Borissova, A., Wang, X. Z. (2013). Extended method of moment for general population balance models including size dependent growth rate, aggregation and breakage kernels. Computers & Chemical Engineering, 56: 1-11.spa
dcterms.referencesFlórez, W., H. Power, H., F. Chejne, F. (2000). Multi-domain dual reciprocity BEM approach for the Navier-Stokes system of equations Communications in Numerical Methods in Engineering ISSN: 1069-8299 Wiley v.16 fasc. p.671-681.spa
dcterms.referencesFlórez Escobar, W., H. Power, H., F. Chejne, F. (2000). Conservative interpolation for the boundary integral solution of the Navier-Stoker equations. Computational v.26 fasc. p.507-513spa
dcterms.referencesFlórez, W., H. Power, H., F. Chejne, F. (2002). Método de elementos de frontera multi-dominio para problemas no newtonianos y no isotérmicos. In Matemáticas Enseñanza Universitaria,spa
dcterms.referencesFlórez, W., H. Pawer, H. F. Chejne, F. (2002). Numerical Solution of Thermal Convection Problems Using the Multi-domain Boundary Element Method. Numerical Methods For Partial Differential Equations, ISSN: 0749-159X Wiley v.18 fasc.3 p.469-482.spa
dcterms.referencesGarcía-Labiano, F., Abad, F. A., de Diego, I. F., Gayán, P., Adánez, J. (2002). Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science, 57 (13): 2381-2393.spa
dcterms.referencesGardiner, C.W. (2004). Handbook of Stochastic Methods; Springer, Germany, 3rd Edition.spa
dcterms.referencesGeorgakis, C., Chang, C.W., Szekely, J. (1979). A changing grain size model for gas-solid reactions. Chemical Engineering Science, 34 (8): 1072-1075spa
dcterms.referencesGibb, M. (1960). Elementary principles in Statically Mechanics, Dover, New Yorkspa
dcterms.referencesGranados, D. A., Chejne, F., Mejía, J.M. (2015). Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns: 03062619 Applied Energy, Amsterdam – Holland Novemberspa
dcterms.referencesGranados, D. A., Chejne, F., Mejía, J. M., Gómez, C.A. Berrío, A., Jurado, W.J. (2013). Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln; Energy 1-11.spa
dcterms.referencesHoyos, B.A., Chejne, F. (2015). Comparison of molecular models of carbon monoxide for calculation of vapor-liquid equilibrium. Rev. Fac. Ing. Univ. Antioquia, Medellín – Colombia, Junio.spa
dcterms.referencesHaase, R. (1990). Thermodynamics of Irreversible Processes. New York: Dover, p 513.spa
dcterms.referencesHines, A., Maddox, R. (1987). Transferencia de Masa: Funda-mentos y Aplicaciones. México: Prentice Hall, p 568spa
dcterms.referencesJaberi, F. A., Colucci, P. J., James, S., Givi P., Pope, S. B. (1999). Filtered mass density function for large-eddy simulation of turbulent reacting flow. J. Fluid Mech. vol 401, pp 85-121spa
dcterms.referencesKurchan, J. (2005). In and Out Equilibrium. Nature, Vol. 433, 20spa
dcterms.referencesLandau, L. D. E. M. Lifshitz. (1969). Física Estadística, Reverté, Barcelona.spa
dcterms.referencesMaya, J.C., Chejne, F. (2016). Novel Model For Non Catalytic Solid-Gas Reactions With Structural Changes By Chemical Reaction And Sintering. Chemical Engineering Science, pp. 258-268.spa
dcterms.referencesMejía, J. M., Chejne, F., Smith, R., Rodríguez, L.F., Fernández, O., Dyner, I. (2005). Propuestas Metodológicas para el diseño de aspas de turbinas de viento de Eje horizontal. Rev. Energética Universidad Nacional de Colombia, 33, Julio. ISSN 0120-9833spa
dcterms.referencesMejía, J. M. (2012). Scalar transport and mixing using large eddy simulation. Tesis doctorado, Facultad de Minas, Universidad Nacional de Colombiaspa
dcterms.referencesMejía, J.M., Sadiki, A., Molina, A., Chejne, F., Pantangi, P.(2015). Large Eddy Simulation of the mixing of a passive scalar in a high-Schmidt turbulent jet. Editor and place of publication: 0098-2202 Journal Of Fluids Engineering-Transactions Of The ASME, Washington – United States, January.spa
dcterms.referencesMejía, J. M., Chejne, F., Molina, A., Sadiki, A. (2015). Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach, Editor and place of publication: 0098-2202 Journal Of Fluids Engineering-Transactions Of The ASME, Washington – United States, October.spa
dcterms.referencesMyung, I.J. (2000). The Importance of Complexity in Model Selection. Journal of Mathematical Psychology 44: 190-204spa
dcterms.referencesMoore, J. (2015). Pragmatism, mathematical models and the scientific ideal of prediction and control. Behavioural Processes 114: 2-13spa
dcterms.referencesÖttinger, H.C. (1996). Stochastic Process in Polymeric Fluid. Springer, Germanyspa
dcterms.referencesKubo, R. (1966). The Fluctuation-Dissipation theorem, Rep. Prog. Phys. 29: 255.spa
dcterms.referencesPope, S. B. (1990). Computations of turbulent combustion: Progress and challenges. Proceeding of the Combustion Institute; 23: 591-612spa
dcterms.referencesPrigogine, I. G. Nicolis. (1987). La Estructura de lo Complejo. Editorial Alianza.spa
dcterms.referencesPrusinkiewicz, P. (1998). Modeling of spatial structure and development of plants: a review. Scientia Horticulturae, Volume 74, Issues 1–2, 30 April, Pages 113-149spa
dcterms.referencesReichl, L.E. (1998). A Modern Course in Statistical Physics”, John Wiley and sons, Inc., “2nd editionspa
dcterms.referencesRivera, A., Chejne, F. (2004). Non-linear phenomena in thermo-acoustic engines. Revista Journal of Non-Equilibrium Thermodynamics, ISSN 0340-0204, Vol. 29, No 3, p. 209-220spa
dcterms.referencesSerra, R., Andretta, M., Company M., and Zanarini, G. (1986). Introduction To The Physics of Complex Systems. Pergamon press, Headington Hill Hall, Oxford, England.spa
dcterms.referencesSharon, E. M. Marden M and H. L. Swinney, H.L. (2005). Flores y Hojas Onduladas. Investigación y Ciencia, 344, pp.70-77, Mayo.spa
dcterms.referencesStachel, J. (1998). Einstein’s Miraculous Year; edited and introduced by Princeton University Press, USA.spa
dcterms.referencesStevens, P.S. (1974). Patterns in Nature,” Little, Brown and Co., Boston. P 256.spa
dcterms.referencesSchindler, M. (2010). A numerical test of stress correlation in fluctuating hydrodynamics. Chemical Physics 375: 327-336.spa
dcterms.referencesSzekely, J., Propster, M. (1975). A structural model for gas solid reactions with a moving boundary—VI: The effect of grain size distribution on the conversion of porous solids. Chemical Engineering Science, 30 (9): 1049-1055spa
dcterms.referencesThompson, D. W. (1917). On growth and form. Cambridge [Eng.] University pressspa
dcterms.referencesTolman, R. (1979). The Principles of Statistical Mechanics. Dover, New York.spa
dcterms.referencesTuring, A. (1952). On the Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London, Series B, 327, pp. 37-52.spa
dcterms.referencesTyagi, M. (2010). Probability Density Function approach for modeling multi-phase flow in porous media. Dissertation ETH Zurich No. 18997spa
dcterms.referencesVelásquez J.E., Chejne F. (2003). Estudio de los fenómenos acoplados en transporte y transferencia: Aprovechamiento por la Ingeniería Química. Ingeniería Química, No. 398spa
dcterms.referencesYe, R., C. Xiang, J. Lin, Z. Peng, K., Yan, H.Z., Tour, J. M.(2013). Coal as an abundant source of graphene quantum dots. Nature Communications, 4: 2943spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.339-
dc.subject.proposalModelamientospa
dc.subject.proposalModellingeng
dc.subject.proposalMultiescalaspa
dc.subject.proposalMult-scaleeng
dc.subject.proposalEcuaciones de balancespa
dc.subject.proposalBalance equationseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume40spa
dc.relation.citationstartpage353spa
dc.relation.citationendpage365spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue155spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
14. Una aproximación a la construcción de modelos matemáticos.pdfMatemáticas1.48 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons