Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/935 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastellanos, Luis M.-
dc.contributor.authorLopez, Francisco-
dc.contributor.authorReyes Vera, Erick-
dc.date.accessioned2021-11-15T14:25:47Z-
dc.date.available2021-11-15T14:25:47Z-
dc.date.issued2016-10-03-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/935-
dc.description.abstractLas propiedades electromagnéticas de todos los materiales existentes en la naturaleza pueden ser determinadas a partir dos parámetros: la permeabilidad magnética µ y la permitividad eléctrica ε. Estos dos parámetros caracterizan la respuesta del material cuando interactúa con la radiación electromagnética. En principio, no existe límite alguno para el rango de valores posibles que pueden tomar µ y ε, por lo cual podemos pensar en diseñar y construir a voluntad materiales con características de respuesta electromagnética especificas (es decir µ y ε) no encontradas en la naturaleza. Estos materiales fabricados en el laboratorio reciben el nombre genérico de metamateriales, y entre ellos se encuentran los conocidos por sus siglas en ingles LHM (Left Handed Materials), así llamados porque los vectores de campo , de las Ondas Electromagnéticas que viajan en su interior están relacionados por la regla de la mano izquierda. La característica distintiva de los LHM es que para ciertas bandas de frecuencia presentan índice de refracción negativo ( ) con modos propagativos posibles solamente si ambos parámetros µ y ε, dentro de dichas bandas de frecuencias son negativos. El propósito de este trabajo es presentar los principios y fundamentos de estos metamateriales de manera que despierte el interés de lectores no especializados.spa
dc.description.abstractElectromagnetic properties of all materials existing in nature can be determined from two parameters, the magnetic permeability and the electrical permittivity, which allow us to characterize the response of any material when this interacts with an electromagnetic wave. In principle, there is no limit to the range of values that can be taken bythe se two parameters. Therefore, it is possible to design and construct materials with specific characteristics of electromagnetic response not found in nature will. These materials manufactured in the laboratory received the generic name of Metamaterials, and among them the well-known by LHM, are so called because the vectors of field of electromagnetic waves travelling in the interior are related by the rule of the left hand. The distinctive characteristic of the LHM is that for certain bands of frequency they present negative index of refraction with possible propagative modes. This phenomenon appears only if both parameters μ and ε, within these bands of frequencies are simultaneously negative. The purpose of this paper is to present the principles and foundations of these metamaterials so that it wakes up the interest of not specialized readers.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleMetamateriales: principales características y aplicacionesspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAlmoneef, T., & Ramahi, O. M. 2015. Split-ring resonator arrays for electromagnetic energy harvesting. Progress In Electromagnetics Research B, 62 (January): 167-180. doi:10.2528/PIERB15012506spa
dcterms.referencesBaena, J. D., Bonache, J., Martin, F., Sillero, R. M., Falcone, F., Lopetegi, T., Sorolla, M. 2005. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques. 53 (4): 1451-1461. doi:10.1109/TMTT.2005.845211spa
dcterms.referencesCaloz, C., & Itoh, T. 2005. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. (I. John Wiley & Sons, Ed.) (First.). Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/0471754323spa
dcterms.referencesCatano-ochoa, D., Senior, D. E., Lopez, F., & Reyes-Vera, E. 2016. Performance Analysis of a Microstrip Patch Antenna loaded with an Array of Metamaterial Resonators. In IEEE International Symposium on Antennas and Propagation/USNC-URSI National Radio Science (pp. 1-3). Fajardo, Puerto Rico: IEEE.spa
dcterms.referencesChaimool, S., Chung, K. L., & Akkaraekthalin, P. 2010. Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface. Progress In Electromagnetics Research B, 22: 23-37. doi:10.2528/PIERB10031901spa
dcterms.referencesChen, Y.-A., Chang, I.-L., & Chen, L.-W. 2016. Spiral hyperlens with enhancements of image resolution and magnification. Journal of Modern Optics, 63(11): 1029-1034. doi:10.1080/09500340.2015.1117670spa
dcterms.referencesCheng, X., Senior, D. E., Kim, C., & Yoon, Y.-K. 2011. A Compact Omnidirectional Self-Packaged Patch Antenna With Complementary Split-Ring Resonator Loading for Wireless Endoscope Applications. IEEE Antennas and Wireless Propagation Letters, 10: 1532-1535. doi:10.1109/LAWP.2011.218131spa
dcterms.referencesDomínguez, M., Cataño, D., & Reyes, E. 2015. Design a sensor of relative dielectric permittivity of a medium using an antenna microstrip with metamaterial structures. Actas de Ingeniería. 1 (1): 110-114spa
dcterms.referencesEbrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. 2014. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sensors Journal. 14 (5): 1345-1351. doi:10.1109/JSEN. 2013.2295312spa
dcterms.referencesFalcone, F., Lopetegi, T., Laso, M. A. G., Baena, J. D., Bonache, J., Beruete, M., Sorolla, M. 2004. Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Physical Review Letters. 93(19): 197401. doi:10.1103/PhysRevLett.93.197401spa
dcterms.referencesFan-Yi Meng, Qun Wu, Bo-Shi Jin, Wang, H.-L., & Jian Wu. 2007. Comments on “Waveguide Miniaturization Using Uniaxial Negative Permeability Metamaterial. IEEE Transactions on Antennas and Propagation. 55 (3): 1016-1017. doi:10.1109/TAP.2007.891880spa
dcterms.referencesJacob, Z., Alekseyev, L. V, & Narimanov, E. 2006. Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express. 14 (18): 8247. doi:10.1364/OE.14.008247spa
dcterms.referencesLi, L.-W., Li, Y.-N., Soon Yeo, T., Mosig, J. R., & Martin, O. J. F. 2011. Addendum: “A broadband and high-gain metamaterial microstrip antenna.” Applied Physics Letters. 99 (15): 159901. doi:10.1063/1.3651481spa
dcterms.referencesLi, R., Guo, Z., Wang, W., Zhang, J., Zhou, K., Liu, J., Gao, J.2015. Arbitrary focusing lens by holographic metasurface. Photonics Research. 3 (5): 252. doi:10.1364/PRJ.3.000252spa
dcterms.referencesLinden, S. 2004. Magnetic Response of Metamaterials at 100 Terahertz. Science, 306 (5700): 1351-1353. doi:10.1126/science.1105371spa
dcterms.referencesLinden, S., Enkrich, C., Dolling, G., Klein, M. W., Zhou, J., Koschny, T., Wegener, M. 2006. Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12 (6): 1097-1105. doi:10.1109/JSTQE.2006.880600spa
dcterms.referencesLipworth, G., Ensworth, J., Seetharam, K., Huang, D., Lee, J. S., Schmalenberg, P., ... Urzhumov, Y. 2014. Magnetic metamaterial superlens for increased range wireless power transfer. Scientific Reports. 4: 3642. doi:10.1038/srep03642spa
dcterms.referencesMark A. Heald, J. B. M. 1994. Classical Electromagnetic radiation(Third Edit.). Mineola, New York: Dover Publications, Incspa
dcterms.referencesMarqués, R., Medina, F., & Rafii-El-Idrissi, R. 2002. Role of bianisotropy in negative permeability and left-handed metamaterials. Physical Review B, 65 (14): 1-6. doi:10. 1103/PhysRevB.65.144440spa
dcterms.referencesMarques, R., Mesa, F., Martel, J., & Medina, F. 2003. Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments. IEEE Trans. Ant. Propagat.51 (10): 2572-2581. doi:10.1109/TAP.2003.817562spa
dcterms.referencesOuedraogo, R. O., Rothwell, E. J., Diaz, A. R., Fuchi, K., & Temme, A. 2012. Miniaturization of Patch Antennas Using a Metamaterial-Inspired Technique. IEEE Transactions on Antennas and Propagation. 60 (5): 2175-2182. doi:10.1109/TAP.2012.2189699spa
dcterms.referencesPendry, J. B., Holden, a. J., Robbins, D. J., & Stewart, W. J.1999a. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques. 47 (11): 2075-2084. doi:10.1109/22.798002spa
dcterms.referencesPendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J.1999b. Low frequency plasmons in thin-wire structures. Journal of Physics: Condensed Matter. 10 (22): 4785-4809. doi:10.1088/0953-8984/10/22/007spa
dcterms.referencesPendry, J., Holden, A., Stewart, W., & Youngs, I. 1996. Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters, 76 (25): 4773-4776. doi:10.1103/PhysRevLett.76.4773spa
dcterms.referencesRusni, I., Ismail, A., Alhawari, A., Hamidon, M., & Yusof, N.2014. An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications. Sensors, 14 (7): 13134-13148. doi:10.3390/s14071313spa
dcterms.referencesSchurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314 (5801): 977-980. doi:10.1126/science.1133628spa
dcterms.referencesSenior, D. E., Cheng, X., Jao, P., Kim, C., Kim, J. K., & Yoon, Y. 2011. Wireless passive sensing application using a cavity loaded evanescent mode half mode substrate integrated waveguide resonator. In 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (pp. 2014–2017). IEEE. doi:10.1109/TRANSDUCERS.2011.5969205spa
dcterms.referencesShelby, R. A. 2001. Experimental Verification of a Negative Index of Refraction. Science. 292 (5514): 77-79. doi:10.1126/science.1058847spa
dcterms.referencesSmith, D., Padilla, W., Vier, D., Nemat-Nasser, S., & Schultz, S. 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters. 84 (18): 4184-4187. doi:10.1103/PhysRevLett.84.4184spa
dcterms.referencesSmith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. 2000. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters. 84 (18): 4184-4187. doi:10.1103/PhysRevLett.84.4184spa
dcterms.referencesTauseef Asim, M., & Ahmed, M. 2015. Metamaterial Inspired Microstrip Antenna Investigations Using Metascreens. International Journal of Antennas and Propagation. 2015,1-9. doi:10.1155/2015/236136spa
dcterms.referencesVeselago, V. 1968. The Electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi. 10 (4): 509-514spa
dcterms.referencesWang, L., & Li, J. L. 2006. A Novel Metamaterial Microstrip Antenna of Broadband and High-Gain. In Proceedings of ISAP2012 (pp. 806-809). Nagoya, Japanspa
dcterms.referencesWu, B.-I., Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T. M., & Kong, J. A. 2005. A study of using metamaterials as antenna substrate to enhance gain. Progress In Electromagnetics Research. 51: 295-328. doi:10.2528/PIER04070701spa
dcterms.referencesXiaoyu Cheng, Jun Shi, Jao, P., Senior, D. E., & Yong-Kyu Yoon. 2011. Reconfigurable split ring resonator array loaded waveguide for insitu tuning. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 2947-2950). IEEE. doi:10.1109/APS.2011.5997146spa
dcterms.referencesYen, T. J., Padilha, W. J., Fang, D. N., Vier, D. C., Smith, D. R., Pendry, J. B., ... Zhang, X. 2004. Terahertz Magnetic Response from Artificial Materials. Science. 303 (2004): 1494-1496. doi:10.1017/CBO9781107415324.004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.345-
dc.subject.proposalMetamaterialesspa
dc.subject.proposalMetamaterialseng
dc.subject.proposalAnillos resonadoresspa
dc.subject.proposalRing resonatorseng
dc.subject.proposalOndas electromagnéticasspa
dc.subject.proposalElectromagnetic waveseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume40spa
dc.relation.citationstartpage395spa
dc.relation.citationendpage401spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue156spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
2. Metamateriales principales características y aplicaciones.pdfCiencias físicas379.88 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons