Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/956 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSierra, Ligia-
dc.date.accessioned2021-11-15T14:43:03Z-
dc.date.available2021-11-15T14:43:03Z-
dc.date.issued2016-12-26-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/956-
dc.description.abstractEsta revisión comprende una descripción de los mecanismos propuestos para explicar el desarrollo de la enfermedad de Alzheimer (EA) y de las estrategias para su tratamiento a la luz de estos mecanismos, enfatizando la utilización de compuestos polifenólicos como agentes terapéuticos. Se analizan los efectos de especies reactivas de oxígeno ROS y presencia de metales redox en el desarrollo de EA y las estrategias de tratamiento, basadas en la actividad antioxidante y quelante de un medicamento y en sus alcances a través de vías de señalización. Dada la importancia de los polifenoles tipo flavonoides para el tratamiento de EA, se tienen en cuenta ejemplos con el flavonoide (-)-epigalocatequin-3-galato (EGCG), perteneciente a la familia de las catequinas. Es importante estudiar como intervienen los polifenoles a nivel celular (rol de su estructura química en la interacción con la célula y en su actividad biológica) con el fin de modular la interacción y las vías de señalización para lograr los efectos neurotróficos esperados. Los efectos in vitro, frecuentemente no corresponden a aquellos in vivo, dado que diferencias en concentraciones y condiciones de estudio hacen que las actividades química y biológica de un medicamento varíen. Esto puede ser debido en parte a la necesidad de un ajuste en concentraciones y tiempo entre los estudios pre clínicos y clínicos. Por otra parte, métodos de liberación eficientes deben ser investigados, teniendo en cuenta que un agente terapéutico para enfermedades neurológicas debería cruzar la barrera sanguínea-cerebral. La nanotecnología basada en sistemas de liberación controlada de medicamentos puede superar estas limitaciones.spa
dc.description.abstractThis review includes a description of the proposed mechanisms to explain the development of Alzheimer’s disease (AD) and strategies for treatment in the light of these mechanisms, with emphasis on the use of polyphenolic compounds as therapeutic agents. The effects of reactive oxygen species ROS and presence of metal redox in the development of AD and treatment strategies with a drug or active substance, based on antioxidant and chelating activity and in its potentiality through signaling pathways are analyzed. Given the importance of polyphenolic compounds as natural antioxidants for treating of AD, in special the flavonoids family, this review takes into account examples of this family, with emphasis on the catechin type flavonoid (-)-epigalocatechin-3-gallate (EGCG). Understanding of how polyphenols are involved at the cellular level (role of its chemical structure in the interaction with the cell and therefore its biological activity is required in order to modulate the interaction and signaling pathways to achieve the desired neurotrophic effects. Effects in vitro often do not correspond to those in vivo. Differences in concentrations and study conditions make that chemical and biological activities of a drug vary. This may be due in part to the need for an adjustment in concentration and time between preclinical and clinical studies. Furthermore, efficient release methods should be investigated, particularly considering that a therapeutic agent for neurological diseases should cross the blood – brain - barrier (BBB). Nano- technology based on controlled release systems of drugs may overcome these limitations.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleEstrategias de investigación para el tratamiento de Alzheimer con antioxidantes polifenólicosspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAnsari Niloufar and Fariba Khodagholi. 2013. Natural Products as Promising Drug Candidates for the Treatment of Alzheimer’s Disease: Molecular Mechanism Aspect. Curr. Neuropharmacol., 11(4): 414-429.spa
dcterms.referencesAtwood C.S., Obrenovich M.E., Liu T., Chan H., Perry G., Smith M.A., Martins R.N. 2003 . Amyloid-β: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-β. Brain Res. Brain Res. Rev. 43 (1): 1-16.spa
dcterms.referencesBallard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. 2011. Alzheimer’s disease. Lancet, 377: 1019-31spa
dcterms.referencesBentahir M., Nyabi O., Verhamme J., Tolia A., Horre K., Wiltfang J., Esselmann H., de Strooper B. 2006. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J. Neurochem., 96: 732-742spa
dcterms.referencesBorchardt T., Schmidt C., Camarkis J., Cappai R., Masters C.L., Beyreuther K., Multhaup G. 2000. Differential effects of zinc on amyloid precursor protein (APP) processing in copper-resistant variants of cultured Chinese hamster ovary cells. Cell Mol. Biol. (Noisy-le-Grand, France), 46 (4): 785-95spa
dcterms.referencesBraicu C., Rugina D., Chedea V.S., Tudoran O., Balacescu O., Neagoe I, Socaciu, C. 2010. Protective action of different natural flavan-3-ols against aflatoxin B1-related cytotoxicity. J. Food Biochem., 34: 595-610spa
dcterms.referencesBraicu Cornelia, Pilecki Valentina, Balacescu Ovidiu, Irimie Alexandru & Ioana Berindan Neagoe. 2011. The Relation-ships Between Biological Activities and Structure of Flavan-3-ols. Int. J. Mol. Sci., 12: 9342-9353.spa
dcterms.referencesCai Z., Yan L.J., Li K., Quazi S.H., Zhao B. Roles of AMP-activated protein kinase in Alzheimer’s disease. (2012). Neuromolecular Med.,14 (1): 1-14spa
dcterms.referencesCarvalho A.N., Firuzi O., Gama M.J., van Horssen J., Saso L. 2016. Oxidative stress and antioxidants in neurological diseases: is there still hope? Drug Des. Devel. Ther., 10: 23-42.spa
dcterms.referencesCastellani R. J., Zhu X., Lee H.-G., Smith M. A., & G. Perry. 2009. Molecular pathogenesis of Alzheimer’s disease: reductionist versus expansionist approaches, Int. J. Mol. Sci., 10 (3): 1386-1406spa
dcterms.referencesCavallucci V., D’Amelio M., Cecconi F. 2012. Aβ toxicity in Alzheimer’s disease. Mol. Neurobiol., 45 (2): 366-78spa
dcterms.referencesCerutti P. A. (1991). Oxidant stress and carcinogenesis. Eur. J. Clin. Invest., 21 (1): 1-5spa
dcterms.referencesChasseigneaux S., & B. Allinquant. 2012. Functions of Aβ, sAPPαand sAPPβ: similarities and differences. J. Neurochem., 120 (S1): 99-108spa
dcterms.referencesCheng Xuan, Lu Zhang, and Ya-Jun Lian. 2015. Molecular Targets in Alzheimer’s disease: From Pathogenesis to Therapeutics. Bio. Med. Research International, Article ID 760758, 6 pagesspa
dcterms.referencesChen Z.P., Schell J.B., Ho C.T., Chen K.Y. 1998. Green tea epigallocatechin gallate shows a pronounced growth inhi-bitory effect on cancerous cells but not on their normal counterparts.Cancer Lett., 129 (2): 173-9.spa
dcterms.referencesCherny R.A., Atwood C.S., Xilinas M.E., Gray D.N., Jones W.D., McLean C.A., Barnham K.J., Volitakis I., Fraser F.W., Kim Y., Huang X., Goldstein L.E., Moir R.D., Lim J.T., Beyreuther K., Zheng H., Tanzi R.E., Masters C.L., Bush A.I. 2001. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron,30: 665-676.spa
dcterms.referencesEsteras Noemí, Dinkova-Kostova Albena T. and Abramov Andrey Y. 2016. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mito-chondrial bioenergetics and function. Biol. Chem., 397 (5): 383-400.spa
dcterms.referencesFinder, V. H. and R Glockshuber. 2007. Amyloid-beta aggre-gation. Neurodegenerative Diseases, 4: 13-27.spa
dcterms.referencesFinder, V. H. 2010. Alzheimer’s disease a general introduction and pathomechanism.J. Alzheimers Dis., 22 (3):5-19.spa
dcterms.referencesFridovich.I. 1978. The biology of oxygen radicals. Science, 201 (4359): 875-80.spa
dcterms.referencesFridovich. I. 1999. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen.Ann. N Y. Acad. Sci., 893: 3-18spa
dcterms.referencesGeerts H, Grossberg G.T. 2006. Pharmacology of acetylcholin-esterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J. Clin. Pharmacol., 46 (7 S1): 8S-16Sspa
dcterms.referencesGilgun-Sherki Y., Melamed E., Offen D. 2001. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40: 959-975spa
dcterms.referencesGodoy Juan A., Juvenal A. Rios, Juan M. Zolezzi, Nady Braidy & Nibaldo C. Inestrosa.2014. Signaling pathway cross talk in Alzheimer’s disease. Cell Communication and Signaling, 12: 23.spa
dcterms.referencesGonzález-Manzano Susana, Ana M. González-Paramás, Laura Delgado, Simone Patianna, Felipe Surco-Laos, Montserrat Dueñas, & Celestino Santos-Buelga. 2012. Oxidative Status of Stressed Caenorhabditis elegans Treated with Epicatechin. J. Agric. Food Chem., 60 (36): 8911-8916.spa
dcterms.referencesGough Mallory, Parr-Sturgess Catherine, & Edward Parkin. 2011. Review Article Zinc Metalloproteinases and Amyloid Beta-Peptide Metabolism: The Positive Side of Proteolysis in Alzheimer’s disease. Biochemistry Research International, Article ID 721463, 13 pagesspa
dcterms.referencesHardy J.A., Higgins G.A. 1992. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256: 184-185spa
dcterms.referencesHegde Muralidhar L., P. Bharathi, Anitha Suram, Chitra Venugopal, Ramya Jagannathan, Pankaj Poddar, Pullabhatla Srinivas, Kumar Sambamurti, Kosagisharaf Jagannath Rao, Janez Scancar, Luigi Messori, Luigi Zecca, & Paolo Zatta. 2009. Challenges Associated with Metal Chelation Therapy in Alzheimer’s Disease. J . Alzheimers Dis., 17 (3): 457-468spa
dcterms.referencesHooper C., Killick R., Lovestone S. 2008. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem.104 (6): 1433-9spa
dcterms.referencesInestrosa Nibaldo C., & Varela-Nallar Lorena. 2014. Wnt signaling in the nervous system and in Alzheimer’s disease. Journal of Molecular Cell Biology.6: 64-74spa
dcterms.referencesIqbal Khalid, Fei Liu, Cheng-Xin Gong, & Inge Grundke-Iqbal. 2010. Tau in Alzheimer Disease and Related Tauopathies. Curr. Alzheimer Res. 8: 656-664.spa
dcterms.referencesIwatsubo, T. 1998. Abeta42, presenilins, and Alzheimer’s disease. Neurobiology of Aging. 19: S11-3.spa
dcterms.referencesJankowsky J.L., Fadale D.J., Anderson J., Xu G.M., Gonzales V., Jenkins N.A., Copeland N.G., Lee M.K., Younkin L.H., Wagner S.L.,Younkin S.G., Borchelt D.R. 2004. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo. Evidence for augmentation of a 42-specific gamma secretase. Human Molecular Genetics. 13: 159-70spa
dcterms.referencesJarrett J.T., Berger E. P. & P. T. Lansbury, Jr. 1993. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the patho-genesis of Alzheimer’s disease. Biochemistry. 32: 4693-7.spa
dcterms.referencesJoshi Gururaj & Jeffrey A. Johnson. 2012. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov.,7 (3): 218-229spa
dcterms.referencesKarunaweera Niloo, Raju Ritesh, Gyengesi Erika & Münch Gerald. 2015. Plant polyphenols as inhibitors of NF-kB induced cytokine production- a potential anti-inflammatory treatment for Alzheimer’s disease.Frontiers in Molecular Neuroscience, 8: 24.spa
dcterms.referencesKhodagholi Fariba, Eftekharzadeh Bahareh, Maghsoudi, Rezaei Nader Parisa Fathi. 2010. Chitosan prevents oxidative stress-induced amyloid β formation and cytotox-icity in NT2 neurons: involvement of transcription factors Nrf2 and NF-Κb. Molecular and Cellular Biochemistry. 337(1): 39-51spa
dcterms.referencesKim Eun Kyung, Choi Eui-Ju. 2010. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta. 1802: 396-405spa
dcterms.referencesKim Hae-Suk, Quon Michael J., Kim Jeong-a. 2014. New insights into the mechanisms of polyphenols beyond anti-oxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biology. 2: 187-195spa
dcterms.referencesKim Taehyun, Hinton David J., & Choi Doo-Sup. 2011. Protein Kinase C-Regulated Aβ Production and Clearance. International Journal of Alzheimer’s disease, (2011), Article ID 857368, 7 pagesspa
dcterms.referencesKoh S.H., Kim S.H., Kwon H., Kim J.G., Kim J.H., Yang K.H., Kim J., Kim S.U., Yu H.J., Do B.R., Kim K.S., Jung H.K. 2004. Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal-differentiated N18D3 cells. Neurotoxicology. 25 (5): 793-802.spa
dcterms.referencesKondo K., Kurihara M., Miyata N., Suzuki T., Toyoda M. 1999. Scavenging mechanisms of (−)-epigallocatechin gallate and (−)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action.Free Radic. Biol. Med.27 (7-8): 855-863spa
dcterms.referencesKotebagilu Namratha Pai, Vanitha Reddy Palvai & Asna Urooj. 2015. Ex Vivo Antioxidant Activity of Selected. Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates, Article ID 728621, 7 pagesspa
dcterms.referencesKou Xianjuan, Kirberger Michael, Yang Yi, Chen Ning. 2013. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Science and Human Wellness, 2 (1): 22-28.spa
dcterms.referencesKrauss, Gerhard. 2008. Biochemistry of Signal Transduction and Regulation. Wiley-VCH, p. 15.ISBN978-3527313976spa
dcterms.referencesKroemer G. and Reed J.C. 2000. Mitochondrial control of cell death. Nat. Med. 6 (5): 513-519.spa
dcterms.referencesLee J.W., Lee Y.K., Ban J.O., Ha T.Y., Yun Y.P., Han S.B., Oh K.W., Hong J.T. 2009. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J. Nutr. 139 (10): 1987-93spa
dcterms.referencesLee V.M., Goedert M., Trojanowski J.Q. 2001. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24: 1121-1159spa
dcterms.referencesLeopoldini M., Russo N., Toscano M. 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125: 288-306spa
dcterms.referencesLin Chih-Li , Chen Ta-Fu, Chiu Ming-Jang, Way Tzong-Der, Lin Jen-Kun.2009. Epigallocatechin gallate (EGCG) sup-presses amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 activation. Neurobiology of Aging. 30: 81-92.spa
dcterms.referencesMandel S., Amit T., Bar-Am O., Youdim M.B. 2007. Iron dysregulation in Alzheimer’s dis ease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog. Neurobiol., 82: 348-360spa
dcterms.referencesMansuri M.L.,Parihar P.,Solanki I., Parihar M.S. (2014).Flavonoids in modulation of cell survival signalling pathways. Genes Nutr.9 (3): 400.spa
dcterms.referencesMattson M.P. and M.K. Meffert. 2006. Roles for NF-kB in nerve cell survival, plasticity, and disease. Cell Death and Differentiation. 13: 852-860spa
dcterms.referencesMenard C., Bastianetto S., Quirion R. 2013. Neuroprotective effects of resveratrol and epigallocatechin gallate poly-phenols are mediated by the activation of protein kinase C gamma. Frontiers in Cellular Neuroscience. 7: 281-8spa
dcterms.referencesMisra Parimal, Owuor Edward D., Li Wenge, Yu Songtao, Qi Chao, Meyer Kirstin, Zhu Yi-Jun, Rao M. Sambasiva, Tony Kong A.-N. & Reddy Janardan K. 2002. Phosphoryla-tion of transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP), Stimulation of transcriptional regulation by mitogenactivated protein kinase. Journal of Biological Chemistry. 277 (50): 48745-48754.spa
dcterms.referencesMonsalve Y., Tosi G., Ruozi B., Belletti D., Vilella A., Zoli M., Vandelli M.A., Forni F., López B.L., Sierra L. 2015. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting. Nanomedicine. (10, 11): 1735-50.spa
dcterms.referencesMoskovitz J., Yim K.A., Choke P.B. 2002. Free radicals and disease. Arch Biochem Biopsy’s. 397: 354-359spa
dcterms.referencesMunin Aude and Florence Edwards-Lévy. 2011. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics. (3, 4): 793-829spa
dcterms.referencesNa H.K., Surh Y.J. 2006. Transcriptional regulation via cysteine thiol modification: a novel molecular strategy for chemo-prevention and cytoprotection. Mol. Carcinog. (45, 6): 368-80spa
dcterms.referencesNicolas M. and B. A. Hassan. 2014. Amyloid precursor protein and neural development. Development. 141 (13): 2543-2548spa
dcterms.referencesNilsberth C., Westlind-Danielsson A., Eckman C.B., Condron M.M., Axelman K., Forsell C., Stenh C., Luthman J., Teplow D.B., Younkin S.G. 2001. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat. Neurosci.4: 887-893spa
dcterms.referencesOddo S., Caccamo A., Cheng D., Jouleh B., Torp R., LaFerla F.M. 2007. Genetically augmenting tau levels does not modulate the onset or progression of Abeta pathology in transgenic mice. J. Neurochem.102: 1053-1063spa
dcterms.referencesOpazo C., Huang X., Cherny R. 2002. Metalloenzyme-like activityof Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J. Biol. Chem. 277: 40302-40308.spa
dcterms.referencesOu Jiang-Rong, Meng-Shan Tan, An-Mu Xie, Jin-Tai Yu, & Lan Tan. 2014. Heat Shock Protein 90 in Alzheimer’s Disease. Bio Med Research International Article ID 796869, 7 pages.spa
dcterms.referencesPasello Michela, Michelacci Francesca, Isabella Scionti, Hattinger Claudia Maria, Zuntini Monia, Caccuri Anna Maria, Scotlandi Katia, Picci Piero, & Serra Massimo. 2008. Overcoming Glutathione S-Transferase P1–Related Cisplatin Resistance in Osteosarcoma. Cancer Res.68: 16spa
dcterms.referencesPiao C. S., Kim D.-S., Ha K.-C., Kim H.-R., Chae H.-J., and Chae S.-W. 2011. The protective effect of epigallocatechin-3 gallate on ischemia/reperfusion injury in isolated rat hearts: an ex vivo approach. Korean Journal of Physiology and Pharmacology. 15 (5): 259-266spa
dcterms.referencesPopa-Wagner Aurel, Smaranda Mitran, Senthilkumar Sivanesan, Edwin Chang & Ana-Maria Buga. 2013. ROS and Brain Diseases: The Good, the Bad, and the Ugly. OxidativeMedicine and Cellular Longevity, Article ID 963520, 14 pages.spa
dcterms.referencesKevin Punsky. 2014. Pathway that contributes to Alzheimer’s disease revealed by research. Science News, https://www.sciencedaily.com/releases/2014/09/140919140738.htm.spa
dcterms.referencesRao K.S.J., Rao R.V., Shanmugavelu P., Menon R.B. 1999. Trace elements in Alzheimer’s disease brain: A new hypothesis. Alzheimers reports. 2: 241-246spa
dcterms.referencesRomeo L., Intrieri M., D’Agata V., Mangano N.G., Oriani G., Ontario M.L., Scapagnini G. 2009. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J. Am. Coll. Nutr., (492S-499S).spa
dcterms.referencesRossor M. N. 1993. Molecular pathology of Alzheimer’s disease.Journal of Neurology, Neurosurgery & Psychiatry. 56: 583-586spa
dcterms.referencesRui-Chun Lu, Meng-Shan Tan, Hao Wang, An-Mu Xie, Jin-Tai Yu, & Lan Tan. 2014. Heat Shock Protein 70 in Alzheimer’s disease. Bio Med. Research International, Article ID 435203, 8 pages.spa
dcterms.referencesScheuner D., Eckman C., Jensen M., Song X., Citron M., Suzuki N., Bird T.D., Hardy J., Hutton M., Kukull W., Larson E., Levy-Lahad E., Viitanen M., Peskind E., Poorkaj P., Schellenberg G., Tanzi R., Wasco W., Lannfelt L., Selkoe D., Younkin S. 1996. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. (2, 8): 864-70spa
dcterms.referencesSchipper H.M. 2004. Redox neurology Visions of an emerging subspecialty. Ann. N.Y. Acad. Sci. 1012: 342-355spa
dcterms.referencesSingh Neha Atulkumar, Mandal Abul Kalam Azad & Kha Zaved Ahmed. 2016. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutrition Journal 15: 60spa
dcterms.referencesSonee M., Sum T., Wang C., Mukherjee S.K. 2004. The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology. 25: 885-91spa
dcterms.referencesSpencer Jeremy P.E. 2007. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr. (2, 3): 257-273spa
dcterms.referencesSpillantini M.G., Murrell J.R., Goedert M., Farlow M.R., Klug A., Ghetti B. 1998. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl. Acad. Sci. USA.(95, 13): 7737-7741spa
dcterms.referencesSuzuki N., Cheung T., Cai X.D., Odaka A., Otvos L. Jr., Eckman C., Golde T.E., Younkin S.G. 1994. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. (264, 5163): 1336-40spa
dcterms.referencesSuzuki Y.J., Forman H.J., Sevanian A. 1997. Oxidant as stimulators of signal transduction. Free Radic. Biol. Med., 22: 269-285.spa
dcterms.referencesSwaran J.S. 2009. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure.Oxid Med. Cell. Longev. (2, 4): 191-206spa
dcterms.referencesTakashima Akihiko, Noguchi Kaori, Michel Gilles, Mercken Marc, Hoshi Minako, Ishiguro Koichi, Imahori Kazutomo. 1996. Exposure of rat hippocampal neurons to amyloid β peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β. Neuroscience Letters. (203, 1): 33-36.spa
dcterms.referencesTarapore Rohinton S., Siddiqui Imtiaz A., & Mukhtar Hasan. 2012. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis. 33 (3): 483-491.spa
dcterms.referencesTreiber C., Simons A., Strauss M., Hafner M., Cappai R., Bayer T.A., Multhaup G. 2004. Clioquinol mediates copper uptake and counteracts copper efflux activities of the amy-loid precursor protein of Alzheimer’s disease. J. Biol. Chem.279: 51958-51964.spa
dcterms.referencesTurner, P. R., O’Connor, K., Tate, W. P., & Abraham, W. C. 2003. Roles of amyloid protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70: 1-32.spa
dcterms.referencesUttara Bayani, Ajay V. Singh, Paolo Zamboni, & R.T Mahajan. 2009. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. (7, 1): 65-74.spa
dcterms.referencesVassar R., Bennett B.D., Babu-Khan S., Kahn S., Mendiaz E.A., Denis P., Teplow D.B., Ross S., Amarante P., Loeloff R., Luo Y., Fisher S., Fuller J., Edenson S., Lile J., Jarosinski M.A., Biere A.L., Curran E., Burgess T., Louis J.C, Collins F., Treanor J., Rogers G., Citron M. 1999. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, (286, 5440): 735-41.spa
dcterms.referencesVelayutham P., Babu A., Liu D.2008. Green tea catechins and cardiovascular health: An update. Curr. Med. Chem. 15: 1840-1850spa
dcterms.referencesWang C., Yu J.T., Miao D., Wu Z.C., Tan M.S., Tan L. (2014). Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol. Neurobiol. 120-35spa
dcterms.referencesWan Wenbin, Xia Shijin, Kalionis Bill, Liu Lumei, & Li Yaming. 2014. The Role of Wnt Signaling in the Development of Alzheimer’s Disease: A Potential Therapeutic Target? Bio. Med. Research International, Article ID 301575, 9 pages.spa
dcterms.referencesWatt T.Nicole, Whitehouse Isobel J. and Nigel M. Hooper. 2011. Review Article. The Role of Zinc in Alzheimer’s disease. Inter. J Alzheimers Dis., Article ID 971021, 10 pagesspa
dcterms.referencesWu C. C., Hsu M. C., Hsieh C. W., Lin J. B., Lai P. H., Wung B. S. 2006. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways. Life Sciences. (78, 25): 2889-2897.spa
dcterms.referencesYounkin, S. G. 1998. The role of A beta 42 in Alzheimer’s disease.Journal of Physiology.92 (3-4): 289-92.spa
dcterms.referencesZhang H., Ma Q., Zhang,Y.-W., & H. Xu. 2012. Proteolytic processing of Alzheimer’s β-amyloid precursor protein.Journal of Neurochemistry. 120 (1): 9-21spa
dcterms.referencesZhao Yan & Baolu Zha. 2013. Oxidative Stress and the Patho-genesis of Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, Article ID 316523, 10 pagesspa
dcterms.referencesZheng H. & E. H. Koo. 2006. The amyloid precursor protein: beyond amyloid, Molecular Neurodegeneration. 1: 5spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.408-
dc.subject.proposalEnfermedad de Alzheimerspa
dc.subject.proposalAlzheimer’s diseaseeng
dc.subject.proposalPlacas amiloidespa
dc.subject.proposalAmyloid-beta plaqueseng
dc.subject.proposalMarañas tauspa
dc.subject.proposalTau tangleseng
dc.subject.proposalCompuestos polifenólicosspa
dc.subject.proposalPolyphenolic compoundseng
dc.subject.proposalVías de señalizaciónspa
dc.subject.proposalSignaling pathwayseng
dc.subject.proposalLiberación controlada de medicamentoseng
dc.subject.proposalControlled drug releaseeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume40spa
dc.relation.citationstartpage608spa
dc.relation.citationendpage620spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue157spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
9. Estrategias de investigación para el tratamiento de Alzheimer con antioxidantes polifenólicos.pdfCiencias Químicas393.77 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons