Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/988 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStühmer, Walter-
dc.date.accessioned2021-11-15T15:07:08Z-
dc.date.available2021-11-15T15:07:08Z-
dc.date.issued2017-10-09-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/988-
dc.description.abstractEntre los más de 100 genes conocidos que codifican canales iónicos selectivos de potasio, el llamado Kv10.1 posee propiedades muy particulares que lo diferencian de los demás. El canal Kv10.1 es dependiente del voltaje y prácticamente se detecta únicamente en tejido nervioso. Sorprendentemente, se descubrió que se encuentra en más del 70 % de los cánceres humanos, y en tejidos de rápido crecimiento como la placenta, las células germinales del testículo o las criptas del colon. Su distribución subcelular ayudó a revelar su función en el ciclo celular, a lo largo del cual es regulado por factores de crecimiento y por los genes supresores de tumores p53 y RB1. El Kv10.1 también favorece la internalización del cilio primario, paso indispensable para la división celular. Dado que las células cancerosas se dividen rápidamente o presentan alteraciones en la función de los factores de crecimiento o en los mencionados genes, suelen expresar el Kv10.1, lo cual se puede detectar usando anticuerpos que actúan contra él. Los pacientes en cuyos tumores se detectan altos niveles de Kv10.1 tienen un peor pronóstico que aquellos con niveles bajos. Además, el bloqueo de la función del Kv10.1 permite reducir la proliferación celular, lo cual lo convierte en un nuevo marcador diagnóstico del cáncer, y en un blanco para su tratamiento.spa
dc.description.abstractAmong the over 100 genes that encode for the various potassium channels known so far, the Kv10.1 exhibits properties that are quite unique. It is voltage-dependent and expressed almost exclusively in the nervous system. Surprisingly, it was found overexpressed in more than 70% of human cancer tissue of diverse origin, as well as in fast growing tissue such as placenta, germinal cells of testicles and in colon crypts. Its sub-cellular distribution allowed for elucidating its role in the cell cycle, during which it is regulated by growth factors and tumor suppressor genes such as the p53 and the RB1. In addition, Kv10.1 favors the internalization of the primary cilium, which is essential for cell division. Given that tumor cells grow and divide rapidly because they often have defective growth-factor signaling or defects in one of the mentioned genes, they frequently over-express Kv10.1, which can be detected using specific antibodies. Patients with high levels of Kv10.1 in their tumors have worse prognosis than those with low levels. In addition, blocking the function of Kv10.1 allows reducing cell proliferation. Therefore, Kv10.1 offers a novel diagnostic and therapeutic window in cancer treatment.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleEl canal de potasio dependiente de voltaje Kv10.1 y el cáncerspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAgarwal, J.R., Griesinger, F., Stühmer, W., Pardo, L.A. 2010. The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer. 9: 18spa
dcterms.referencesArcangeli, A., Becchetti, A. 2015. Novel perspectives in cancer therapy: Targeting ion channels. Drug Resistance Updates. 21-22: 11-19spa
dcterms.referencesBorowiec, A.S., Hague, F., Harir, N., Guenin, S., Guerineau, F., Gouilleux, F., Roudbaraki, M., Lassoued, K., Ouadid-Ahidouch, H. 2007. IGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation. J Cell Physiol. 212: 690-701spa
dcterms.referencesCamacho, J., Sánchez, A., Stühmer, W., Pardo, L.A. 2000. Cyto-skeletal interactions determine the electrophysiological properties of human EAG potassium channels. Pflugers Arch. 441: 167-174spa
dcterms.referencesDíaz, L., Ceja-Ochoa, I., Restrepo-Angulo, I., Larrea, F., Ávila-Chávez, E., García-Becerra, R., Borja-Cacho, E., Barrera, D., Ahumada, E., Gariglio, P. et al.2009. Estrogens and human papilloma virus oncogenes regulate human Ether-a-go-go-1 potassium channel expression. Cancer Res. 69: 3300-3307spa
dcterms.referencesDownie, B.R., Sánchez, A., Knötgen, H., Contreras-Jurado, C., Gymnopoulos, M., Weber, C., Stühmer, W., Pardo, L.A.2008. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem. 283: 36234-36240spa
dcterms.referencesGarcía-Quiroz, J., Camacho, J. 2011. Astemizole: An old anti-histamine as a new promising anti-cancer drug. Anti-Cancer Agents Med Chem. 11: 307-314spa
dcterms.referencesGlickman, M.H., Ciechanover, A. 2002. The ubiquitin-pro-teasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev. 82: 373-428.spa
dcterms.referencesHartung, F., Pardo, L.A. 2016. Guiding TRAIL to cancer cells through Kv10.1 potassium channel overcomes resistance to doxorubicin. Eur Biophys J. 45: 709-719spa
dcterms.referencesHemmerlein, B., Weseloh, R.M., de Queiroz, F.M., Knötgen, H., Sánchez, A., Rubio, M.E., Martin, S., Schliephacke, T., Jenke, M., Radzun, H.J., et al.2006. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer.5: 41spa
dcterms.referencesHerrmann, S., Ninkovic, M., Kohl, T., Lörinczi, E., Pardo, L.A.2012. Cortactin controls surface expression of the voltage-gated potassium channel KV10.1. J Biol Chem. 287: 44151-44163spa
dcterms.referencesHwang, S.G., Lee, D.Y., Kim, J.Y., Seo, T.G., Choe, J.H. 2002. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 277: 2923-2930spa
dcterms.referencesKamb, A., Tsengcrank, J., Tanouye, M.A. 1988. Multiple pro-ducts of the Drosophila shaker gene may contribute to potassium channel diversity. Neuron. 1: 421-430spa
dcterms.referencesKohl, T., Lörinczi, E., Pardo, L.A., Stühmer, W. 2011. Rapid internalization of the oncogenic K+ channel Kv10.1. PLoS ONE. 6: e26329spa
dcterms.referencesLastraioli, E., Perrone, G., Sette, A., Fiore, A., Crociani, O., Manoli, S., D’Amico, M., Masselli, M., Iorio, J., Callea, M., et al. 2015. hERG1 channels drive tumour malignancy and may serve as prognostic factor in pancreatic ductal adenocarcinoma. Brit J Cancer. 112: 1076-1087spa
dcterms.referencesLin, H.X., Li, Z., Chen, C., Luo, X.B., Xiao, J.N., Dong, D.L., Lu, Y.J., Yang, B.F., Wang, Z.G. 2011. Transcriptional and post-transcriptional mechanisms for oncogenic over-expression of ether a go-go K+ channel. PLoS ONE. 6: 10spa
dcterms.referencesMartínez, R., Stühmer, W., Martin, S., Schell, J., Reichmann, A., Rohde, V., Pardo, L. 2015. Analysis of the expression of Kv10.1 potassium channel in patients with brain metastases and glioblastoma multiforme: Impact on survival. BMC Cancer. 15: 1-9spa
dcterms.referencesMenéndez, S.T., Villaronga, M.A., Rodrigo, J.P., Álvarez-Teijeiro, S., García-Carracedo, D., Urdinguio, R.G., Fraga, M.F., Pardo, L.A., Gutiérrez Viloria, C., Suárez, C., García-Pedrero, J.M. 2012. Frequent aberrant expres-sion of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: Pathobiological mechanisms and clinical implications. J Mol Med (Berl). 90: 1173-1184spa
dcterms.referencesMortensen, L.S., Schmidt, H., Farsi, Z., Barrantes-Freer, A., Rubio, M.E., Ufartes, R., Eilers, J., Sakaba, T., Stuehmer, W., Pardo, L.A. 2015. Kv10.1 opposes activity-dependent increase in Ca2+ influx into the presynaptic terminal of the parallel fibre-Purkinje cell synapse. J Physiol. 593: 181-196spa
dcterms.referencesNinkovic, M., Mitkovski, M., Kohl, T., Stühmer, W., Pardo, L.A. 2012. Physical and functional interaction of KV10.1 with Rabaptin-5 impacts ion channel trafficking. FEBS Lett. 586: 3077-3084.spa
dcterms.referencesOuadid-Ahidouch, H., Ahidouch, A., Pardo, L.A. 2016. Kv10.1 K+ channel: From physiology to cancer. Pflugers Arch. 468: 751-762spa
dcterms.referencesOrtiz, C.S., Montante-Montes, D., Saqui-Salces, M., Hinojosa, L.M., Gamboa-Domínguez, A., Hernández-Gallegos, E., Martínez-Benítez, B., Solís-Pancoatl, M.D.R., García-Villa, E., Ramírez, A., et al.2011. Eag1 potassium channels as markers of cervical dysplasia. Oncol Rep. 26: 1377-1383.spa
dcterms.referencesPardo, L.A., del Camino, D., Sánchez, A., Alves, F., Brüggemann, A., Beckh, S., Stühmer, W. 1999. Oncogenic potential of EAG K+ channels. EMBO J. 18: 5540-5547spa
dcterms.referencesPardo, L.A., Gómez-Varela, D., Major, F., Sansuk, K., Leurs, R., Downie, B.R., Tietze, L.F., Stühmer, W. 2012. Approaches targeting K(V)10.1 open a novel window for cancer diagnosis and therapy. Curr Med Chem. 19: 675-682spa
dcterms.referencesPardo, L.A., Stühmer, W. 2014. The roles of K+ channels in cancer. Nat Rev Cancer.14: 39-48spa
dcterms.referencesSchwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N., Jan, L.Y. 1988. Multiple potassiium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature. 331: 137-142spa
dcterms.referencesSengupta, S., Henry, R.W. 2015. Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system. Biochim Biophys Acta-Gene Regul Mech. 1849: 1289-1297spa
dcterms.referencesStansfeld, C.E., Röper, J., Ludwig, J., Weseloh, R.M., Marsh, S.J., Brown, D.A., Pongs, O. 1996. Elevation of intra-cellular calcium by muscarinic receptor activation induces a block of voltage-activated rat Ether-à-go-go channels in a stably transfected cell line. Proceedings of the National Academy of Sciences. 93: 9910-9914spa
dcterms.referencesTerlau, H., Ludwig, J., Steffan, R., Pongs, O., Stühmer, W., Heinemann, S. 1996. Extracellular Mg2+ regulates activa-tion of rat eag potassium channel. Pflügers Archiv European Journal of Physiology. 432: 301-312spa
dcterms.referencesStühmer, W., Stocker, M., Sakmann, B., Seeburg, P., Baumann, A., Grupe, A., Pongs, O. 1988. Potassium channels expressed from rat-brain CDNA have delayed retifier properties. FEBS Lett. 242: 199-206.spa
dcterms.referencesUfartes, R., Schneider, T., Mortensen, L.S., de Juan Romero, C., Hentrich, K., Knoetgen, H., Beilinson, V., Moebius, W., Tarabykin, V., Alves, F., et al.2013. Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice. Hum Mol Genet. 22: 2247-2262spa
dcterms.referencesUrrego, D., Movsisyan, N., Ufartes, R., Pardo, L.A. 2016. Periodic expression of Kv10.1 driven by pRb/E2F1 contrib-utes to G2/M progression of cancer and non-transformed cells. Cell Cycle. 15: 799-811spa
dcterms.referencesWadhwa, S., Wadhwa, P., Dinda, A.K., Gupta, N.P. 2009. Differential expression of potassium ion channels in human renal cell carcinoma. Int Urol Nephrol. 41: 251-257spa
dcterms.referencesWarmke, J.W., Ganetzki, B. 1994. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA. 91: 3438-3442spa
dcterms.referencesZimna, A., Kurpisz, M. 2015. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Appli-cations and therapies. Biomed Res Int. 2015: 549412spa
dcterms.referenceszur Hausen, H. 2002. Papillomaviruses and cancer: From basic studies to clinical application. Nature Rev Cancer. 2: 342-350spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.509-
dc.subject.proposalCanales iónicosspa
dc.subject.proposalIon channelseng
dc.subject.proposalCambio conformacional dependiente de voltajespa
dc.subject.proposalVoltage-gatingeng
dc.subject.proposalDivisión celularspa
dc.subject.proposalCell divisioneng
dc.subject.proposalCáncerspa
dc.subject.proposalCancereng
dc.subject.proposalCilio primariospa
dc.subject.proposalPrimary ciliumeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume41spa
dc.relation.citationstartpage274spa
dc.relation.citationendpage280spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue160spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
1. El canal de potasio dependiente de voltaje Kv10.1 y el cáncer.pdfCiencias Biomédicas615.39 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons