Please use this identifier to cite or link to this item: Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSerna, Horacio-
dc.contributor.authorBarragán, Daniel-
dc.description.abstractEn la naturaleza observamos una amplia variedad de colores, ritmos y formas, a toda escala y en sistemas animados e inanimados. Desde hace décadas los patrones y ritmos de la naturaleza han sido objeto de estudio y fuente de inspiración en el desarrollo tecnológico y en el bienestar del ser humano. Hoy entendemos que el diseño de los patrones de la naturaleza obedece a principios de funcionalidad y de eficiencia. En este artículo nos enfocamos en aspectos fisicoquímicos para mostrar cómo el estudio de los patrones espacio-temporales se convirtió en un área de gran interés e investigación en ciencias naturales. En particular, abordamos algunos sistemas donde la formación de patrones se explica mediante el acople entre procesos químicos y de transporte, tales como los jardines químicos, la precipitación periódica y los patrones de
dc.description.abstractAt all scales and both in animate and inanimate systems, nature displays a wide variety of colors, rhythms, and forms. For decades, these natural patterns and rhythms have been studied and used as a source of inspiration for the technological development and well-being of human beings. Today we understand that the design of these patterns responds to principles of functionality and efficiency. This article focuses on physicochemical aspects to show how the study of spatiotemporal patterns became such an important area of interest and research for natural sciences. In particular, we address some systems in which the formation of patterns is explained by the coupling between chemical and transport processes, such as chemical gardens, periodic precipitation and Turing patterns.eng
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titlePatterns in nature: more than an inspiring designspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAl-Ghoul, M., & Eu, B. C. (1996). Hyperbolic reaction-diffusion equations and irreversible thermodynamics. Physica. 90: 119-153.
dcterms.referencesArmand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electro-chemical challenges of the future. Nature Materials. 8: 621-629.
dcterms.referencesBadr, L., & Epstein, I. R. (2017). Size-controlled synthesis of Cu2O n a n o p a r t i c l e s v i a r e a c t i o n - d i ff u s i o n . C h e m i c a l P h y s i c s Letters. 669: 17-21. 11.050spa
dcterms.referencesBar-Cohen, Y. (2006). Biomimetics--using nature to inspire human innovation. Bioinspiration & Biomimetics. 1: 1-12.
dcterms.referencesBarge, L. M., Cardoso, S. S. S., Cartwright, J. H. E., Cooper, G. J. T., Cronin, L., De Wit, A., Thomas, N. L. (2015). From chemical gardens to chemobrionics. Chemical Reviews. 115:8652-8703.
dcterms.referencesBejan, A. (1995). Entropy Generation Minimization. New York: CRC Pressspa
dcterms.referencesBejan, A. (1997). Advanced Engineering Thermodynamics. New York: John Wiley & Sonsspa
dcterms.referencesBejan, A., & Lorente, S. (2006). Constructal theory of generation of configuration in nature and engineering. Journal of Applied Physics. 100: 1-27.
dcterms.referencesBejan, A., & Marden, J. H. (2006). Unifying constructal theory for scale effects in running, swimming and flying. Journal of Experimental Biology. 209: 238-248. 1242/jeb.01974spa
dcterms.referencesBelousov, B. P. (1959). A periodic reaction and its mechanism. Compilation of Abstracts on Radiation Medicine. 147: 1-3spa
dcterms.referencesBeloussov, L. V. (2012). Morphogenesis as a macroscopic self-organizing process. BioSystems. 109: 262-279.
dcterms.referencesBeloussov, L. V. (2012). Morphogenesis as a macroscopic self-organizing process. BioSystems. 109: 262-279.
dcterms.referencesBlagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y., & Katanaev, V. L. (2015). Diverse set of Turing nano-patterns coat corneae across insect lineages. Proceedings of the National Academy of Sciences of the United States of America. 112: 10750-10755. 1505748112spa
dcterms.referencesBrachet, J., Denis, H., & Vitry, F. D. (1964). The effects of Actino-mycin D. and Puromycin on morphogenesis in amphibian eggs and Acetabularia mediterranea. Developmental Biology. 9: 398-434.
dcterms.referencesCallen, H. B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed.). New York: John Wiley & Sonsspa
dcterms.referencesCastets, V., Dulos, E., Boissonade, J., & De Kepper, P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Physical Review Letters. 64: 2953-2956.
dcterms.referencesChou, H. H., Nguyen, A., Chortos, A., To, J. W., Lu, C., Mei, J., Bao, Z. (2015). A chameleon-inspired stretchable elec-tronic skin with interactive colour changing controlled by tactile sensing. Nature Communications. 6:
dcterms.referencesClark, I. A., Daly, C. A., Devenport, W., Alexander, W. N., Peake, N., Jaworski, J. W., & Glegg, S. (2016). Bio-inspired canopies for the reduction of roughness noise. Journal of Sound and Vibration. 385: 33-54.
dcterms.referencesCoppens, M.O. (2012). A nature-inspired approach to reactor and catalysis engineering. Current Opinion in Chemical Engineering. 1: 281-289. 2012.03.002spa
dcterms.referencesCoppens, M.-O., & Froment, G. F. (1996). Catalyst design accounting for the fractal surface morphology. The Chemical Engineering Journal and the Biochemical Engineering Journal. 64: 69-76. 03105-3spa
dcterms.referencesDavies, J. (2013). Mechanisms of Morphogenesis. Edinburgh: Academic Press Incspa
dcterms.referencesDe Groot, S. R., & Mazur, P. (1984). Non-Equilibrium Thermo-dynamics. New York: Dover
dcterms.referencesDewar, R. C. (2005). Maximum entropy production and the fluctuation theorem. J Phys A: Math Gen. 38: 371-381.
dcterms.referencesEu, B. C. (2016). Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydro-dynamics (Vol. 2). Montreal: Springer. 1007/978-3-319-41147-7spa
dcterms.referencesGeorge, J., & Varghese, G. (2002). Liesegang patterns: Estimation of diffusion coefficient and a plausible justification for colloid explanation. Colloid and Polymer Science. 280:1131-1136.
dcterms.referencesGierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik. 12: 30-39.
dcterms.referencesGoodwin, B. C., & Briere, C. (1994). Mechanics of the cytoskeleton and morphogenesis of acetabularia. International Review of Cytology. 150: 225-242.
dcterms.referencesGoodwin, B. C., & Cohen, M. H. (1969). A phase-shift model for the spatial and temporal organization of developing systems. Journal of Theoretical Biology. 25: 49-107.
dcterms.referencesGoodwin, B. C., & Pateromichelakis, S. (1979). The role of electrical fields, ions, and cortex in the morphogenesis of Acetabularia. Planta. 145:
dcterms.referencesGoodwin, B. C., & Trainor, L. E. H. (1985). Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. Journal of Theoretical Biology. 117: 79-106.
dcterms.referencesGray, P., & Scott, K. (1984). Autocatalytic in the Isothermal, Continous Stirred Tank Reactor Oscillations and Inesta-bilities. Chemical Engineering Science. 39: 1087-1097.
dcterms.referencesGray, P., & Scott, S. K. (1983). Autocatalytic reactions in the isothermal, continuous stirred tank reactor Isolas and other forms of multistability. Chemical Engineering Science. 39:1087-1097.
dcterms.referencesGrzybowski, B. A. (2009). Chemistry in Motion: Reaction–Diffusion Systems for Micro- and Nanotechnology. Chichester: John Wiley & Sonsspa
dcterms.referencesGuiu-Souto, J. (2014). Autoorganización de Estructuras de Turing en Presencia de Campos Externos. Universidad de Santiago de Compostela, Santiago de Compostelaspa
dcterms.referencesGuiu-Souto, J., Carballido-Landeira, J., & Muñuzuri, A. P.(2012). Characterizing topological transitions in a Turing-pattern-forming reaction-diffusion system. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 85: 1-8.
dcterms.referencesGuiu-Souto, J., Escala, D. M., Carballido-Landeira, J., Muñuzuri, A. P., & Martín-Ortega, E. (2012). Viscous Fingering Instabilities in Reactive Miscible Media. Numerical Methods for Hyperbolic Equations. 409spa
dcterms.referencesHaemmerling, J. (1963). Nucleo-Cytoplasmic Interactions in Acetabularia and other Cells. Annual Review of Plant Physiology. 14: 65-92. 14.060163.000433spa
dcterms.referencesHeisenberg, C., & Bellaiche, Y. (2013). Review Forces in Tissue Morphogenesis and Patterning. Cell. 153 (5): 948-962.
dcterms.referencesHelms, M., Vattam, S. S., & Goel, A. K. (2009). Biologically inspired design: process and products. Design Studies. 30: 606-622.
dcterms.referencesHenisch, H. (1991). Periodict Precipitation: A Microcomputer Analysis of Transport and Reaction Processes in Diffusion Media, with Software Development. Oxford: Pergamon Pressspa
dcterms.referencesHoang, T., & Hwang, H. J. (2013). Turing instability in a general system. Nonlinear Analysis, Theory, Methods and Applications. 91: 93-113. 06.010spa
dcterms.referencesHoward, J., Grill, S. W., & Bois, J. S. (2011). Turing’s next steps: the mechanochemical basis of morphogenesis. Nature Reviews Molecular Cell Biology. 12: 392-398spa
dcterms.referencesHunding, A., Kauffman, S. A., & Goodwin, B. C. (1990). Drosophila segmentation: Supercomputer simulation of prepattern hierarchy. Journal of Theoretical Biology. 145:369-384.
dcterms.referencesJiang, J., & Sakurai, K. (2016). Formation of Ultrathin Liesegang Patterns. Langmuir. 32: 9126-9134.
dcterms.referencesKjelstrup, S., & Bedeaux, D. (2008). Non-Equilibrium Ther-modynamics of Heterogeneous Systems. Londres: World Scientificspa
dcterms.referencesLagzi, I. (2012). Controlling and engineering precipitation patterns. Langmuir. 28: 3350-3354.
dcterms.referencesLebedeva, M. I., Vlachos, D. G., & Tsapatsis, M. (2004). Bifurcation analysis of Liesegang ring pattern formation. Physical Review Letters. 92: 88301. 1103/PhysRevLett.92.08830spa
dcterms.referencesLedesma Durán, A. (2012). Patrones de turing en sistemas bioló-gicos. Universidad Autónoma Metropolitana, México D.
dcterms.referencesLeduc, S. (2010). The Mechanism of Life. New York: Rebman Company. Retrieved from 33862/33862-h/33862-h.htm#page123spa
dcterms.referencesLengyel, I., & Epstein, I. R. (1992). A chemical approach to designing Turing patterns in reaction-diffusion systems. Proceedings of the National Academy of Sciences of the United States of America. 89: 3977-3979. 1073/pnas.89.9.3977spa
dcterms.referencesLexa, D., & Holba, V. (1993). Periodic precipitation of silver chromate/dichromate in gelatin. Colloid and Polymer Science. 9: 884-890spa
dcterms.referencesLiesegang, R. (1896). Ueber einige Eigenschaften von Gallerten. Naturwissenschaftliche Wochenschrift, 10: 353-362spa
dcterms.referencesLucia, U. (2012). Maximum or minimum entropy generation for open systems? Physica A: Statistical Mechanics and Its Applications, 391: 3392-3398.
dcterms.referencesMagnanelli, E., Wilhelmsen, Ø., Acquarone, M., Folkow, L. P., & Kjelstrup, S. (2016). The Nasal Geometry of the Rein-deer Gives Energy-Efficient Respiration. Journal of Non-Equilibrium Thermodynamics,
dcterms.referencesMaldonado, C. E. (2004). Ciencias de la complejidad: Ciencias de los cambios súbitos. Bogotá D. Cspa
dcterms.referencesMcKeag, T. (2012). GreenBiz. Retrieved November 14, 2016, from
dcterms.referencesMüller, S. C., & Ross, J. (2003). Spatial structure formation in precipitation reactions. Journal of Physical Chemistry A. 107: 7997-8008.
dcterms.referencesMurray, J. D. (2003a). Mathematical Biology I: An introduction(3rd editio). Berlin: Springer-Verlagspa
dcterms.referencesMurray, J. D. (2003b). Mathematical Biology II: Spatial models and biomedical applications (3rd editio). Berlin: Springer-Verlagspa
dcterms.referencesNagao, R., Epstein, I., Gonzalez, E. R., & Varela, H. (2008). Temperature (over) compensation in an oscillatory surface reaction. The Journal of Physical Chemistry A. 20: 4617-4624.
dcterms.referencesNagao, R., Epstein, I. R., & Dolnik, M. (2013). Forcing of Turing Patterns in the Chlorine Dioxide − Iodine − Malonic Acid Reaction with Strong Visible Light. The Journal of Physical Chemistry. 117: 9120-9126. https:/
dcterms.referencesNagao, R., & Varela, H. (2016). Turing patterns in chemical systems. Química Nova, 4: 474-485. https/ 5935/0100-4042.20160026spa
dcterms.referencesNakouzi, E., & Steinbock, O. (2016). Self-organization in pre-cipitation reactions far from the equilibrium. Science Advances, 2(8): e1601144–e1601144. 1126/sciadv.1601144spa
dcterms.referencesNeedham, J. (1935). Chemical Embryology. Annuals Reviews of Biochemistry. 4: 449-469spa
dcterms.referencesNicolis, G., & Prigogine, I. (1977). Self-Organization in Non-Equilibrium Systems. New York: John Wiley &
dcterms.referencesNogueira, P. A., Batista, B. C., Faria, R. B., & Varela, H. (2014). The effect of temperature on the dynamics of a homoge-neous oscillatory system operated in batch and under flow. RSC Advances, 4: 30412-30421. https:/
dcterms.referencesOhtsuka, Y., Seki, T., & Takeoka, Y. (2015). Thermally Tunable Hydrogels Displaying Angle-Independent Structural Colors. Angewandte Chemie, 127: 15588-15593. 1002/ange.201507503spa
dcterms.referencesOnsager, L. (1931). Reciprocal relations in irreversible processes I. Physical Review. 37: 405-426spa
dcterms.referencesPearson, J. E. (1993). Complex patterns in a simple system. Science (New York, N.Y.), 261: 189-92. 1126/science.261.5118.189spa
dcterms.referencesPeña Pellicer, B. (2002). Inestabilidades de Turing en Sistemas de Reacción-Difusión. Universidad de Navarra, Pamplonaspa
dcterms.referencesPrigogine, I. (1967). Thermodynamics of irreversible processes. Nueva York: John Wiley & Sonsspa
dcterms.referencesPullela, S. R., Cristancho, D., He, P., Luo, D., Hall, K. R., & Cheng, Z. (2009). Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction. Physical Chemistry Chemical Physics: PCCP, 11: 4236–4243.
dcterms.referencesReis, A. H. (2006). Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure. Applied Mechanics Reviews, 59: 269.
dcterms.referencesRod, V., & Vacek, V. (1986). Diffusion coefficients of potassium chromate and dichromate in water at 25°C. Collection of Czechoslovak Chemical Communications. 7: 1403-1406.
dcterms.referencesRommelaere, J., & Hiernaux, J. (1975). Model for the positional differentiation of the cap in Acetabularia. BioSystems. 7: 250-258.
dcterms.referencesSandakhchiev, L. S., Puchkova, L. I., Pikalov, A. V., Khristolubova, N. B., & Kiseleva, E. V. (1972). Subcellular Localization of Morphogenetic Factors in Anucleate Acetabularia At the Stages of Genetic Information Transfer and Expression. Biology and Radiobiology of Anucleate Systems. 297-320.
dcterms.referencesSatnoianu, R. A., Menzinger, M., & Maini, P. K. (2010). Turing insta-bilities in general systems. Journal of Mathematical Biology. 41: 493-512.
dcterms.referencesSchwarzenberger, K., Köllner, T., Linde, H., Boeck, T., Odenbach, S., & Eckert, K. (2014). Pattern formation and mass transfer under stationary solutal Marangoni insta-bility. Advances in Colloid and Interface Science. 206: 344-71.
dcterms.referencesSel’kov, E. E. (1968). Self-Oscillations in Glycolysis 1. A Simple Kinetic Model. European Journal of Biochemistry. 4: 79-86.
dcterms.referencesSerna, H. (2016). Evaluación termodinámica de patrones morfo-genéticos estacionarios en sistemas de reacción-difusión no-isotérmicos. Universidad Nacional de Colombia, Medellínspa
dcterms.referencesSerna, H., Muñuzuri, A. P., & Barragán, D. (2017). Thermo-dynamic and morphological characterization of Turing patterns in non-isothermal reaction–diffusion systems. Phys. Chem. Chem. Phys. 19: 14401-14411 1039/C7CP00543Aspa
dcterms.referencesSimakov, D. S. A., & Pérez-Mercader, J. (2013). Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator. Scientific Reports. 3 (2404): 1-10.
dcterms.referencesSolomon, E. P., Berg, L. R., & Martin, D. W. (2013). Biología. México D. F.: Cengage Learningspa
dcterms.referencesStrogatz, S. H. (2001). Nonlinear Dynamics and Chaos: With Appli-cations To Physics, Biology, Chemistry, And Engineering. Westview Pressspa
dcterms.referencesTeyssier, J., Saenko, S. V., Van der Marel, D., & Milinkovitch, M. C. (2015). Photonic crystals cause active colour change in chameleons. Nature Communications. 6 (6368): 1-7.
dcterms.referencesTuring, A. (1952). The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 237: 37-72spa
dcterms.referencesWalish, J. J., Kang, Y., Mickiewicz, R. A., & Thomas, E. L. (2009). Bioinspired electrochemically tunable block copolymer full color pixels. Advanced Materials. 21: 3078-3081.
dcterms.referencesWalliser, R. M., Boudoire, F., Orosz, E., Tóth, R., Braun, A., Constable, E. C., ... Lagzi, I. (2015). Growth of nanoparticles and microparticles by controlled reaction-diffusion processes. Langmuir. 31: 828-1834.
dcterms.referencesWalton, B. M., & Bennet, A. F. (1993). Temperature-dependent color change in Kenyan chameleons. Physiological Zoology. 66: 270-287. 3016369spa
dcterms.referencesWerz, G. (1974). Fine-structural aspects of morphogenesis in Acetabularia. International Review of Cytology. 38: 319-367.
dcterms.referencesXia, F., & Jiang, L. (2008). Bio-inspired, smart, multiscale interfacial materials. Advanced Materials. 20: 2842-2858.
dcterms.referencesYeh, H., & Wills, G. B. (1970). Diffusion coefficient of sodium nitrate in aqeous solution at 25°C as a function of concentra-tion from 0.1 to 1.0M. Journal of Chemical and Engineering.1: 187-189.
dcterms.referencesZhabotinsky, A. M., & Zaikin, A. N. (1970). Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System. Nature. 225:
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalPatrones de Turingspa
dc.subject.proposalTuring patternseng
dc.subject.proposalPrecipitación periódicaspa
dc.subject.proposalPeriodic precipitationeng
dc.subject.proposalEconomía energéticaspa
dc.subject.proposalEnergy Economyeng
dc.subject.proposalProcesos bio-inspiradosspa
dc.subject.proposalBio-inspired processeseng
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
9. Patterns in nature.pdfCiencias naturales1.58 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons