Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/1011 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLemeshko, Viktor V.-
dc.date.accessioned2021-11-15T15:22:04Z-
dc.date.available2021-11-15T15:22:04Z-
dc.date.issued2018-04-13-
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/1011-
dc.description.abstractHasta 95 % de la energía en las células eucariotas se produce en las mitocondrias, las cuales se componen de dos membranas, la interna y la externa. La principal función de la membrana interna es la fosforilación oxidativa. El trifosfato de adenosina (adenosine triphosphate, ATP) y el fosfato de creatina, producidos en las mitocondrias, se transfieren al citosol atravesando la membrana mitocondrial externa, básicamente a través de las porinas (voltagedependent anion cannel, VDAC). Dado que los mecanismos de generación del potencial eléctrico en esta membrana se desconocen, generalmente se asume que la compuerta eléctrica de los VDAC siempre está abierta. Sin embargo, el potencial de la membrana mitocondrial externa puede generarse de manera dependiente del metabolismo energético celular mediante diversos mecanismos. La generación de dicho potencial mediante los complejos VDAC-hexocinasa en las células cancerígenas, o la oxidación directa del NADH citosólico en las mitocondrias de la levadura Saccharomyces cerevisiae permiten explicar los efectos de Crabtree y Warburg como una supresión eléctrica de las mitocondrias. Según el modelo desarrollado, la prevención de la formación de los complejos VDAC-hexocinasa por acción de algunos factores podría causar efectos anti-Warburg y anticancerígenos. Además, este potencial positivo generado por los complejos VDAC-creatina-cinasa podría proteger las mitocondrias de los cardiomiocitos y de otras células frente a los niveles tóxicos de calcio en el citosol. Los mecanismos propuestos de generación del potencial de la membrana dependiente del metabolismo energético celular, sugieren que las propiedades eléctricas del VDAC tienen un papel importante en varios procesos fisiológicos y patofisiológicos.spa
dc.description.abstractUp to 95% of the energy in the eukaryotic cells is produced in the mitochondria, which are composed of two membranes, internal and external. The main function of the inner membrane is the oxidative phosphorylation. ATP and/or phosphocreatine produced in mitochondria are transferred to the cytosol across the mitochondrial outer membrane, mainly through the porins (voltage-dependent anion channel, VDAC). As the mechanisms of generation of the electrical potential on this membrane are not known, it is generally assumed that the VDAC electric gate is always open. However, the outer membrane potential (OMP) of mitochondria may be generated by various mechanisms in a manner dependent on the cell energy metabolism. OMP generation by the VDAChexokinase complexes in cancer cells, or by the direct oxidation of cytosolic NADH in the mitochondria of the yeast Saccharomyces cerevisiae, may explain the Crabtree and Warburg effects as an electrical suppression of mitochondria. According to the model developed, the prevention of the formation of the VDAC-hexokinase complexes may result in anti- Warburg and anti-cancer effects. In addition, the generation of the positive OMP by the VDAC-creatine kinase complexes could protect mitochondria in cardiomyocytes and other cells against toxic levels of cytosolic calcium. The mechanisms proposed for OMP generation dependent on the cell energymetabolism suggest that the VDAC electrical properties play an important role in various physiological and pathophysiological processes.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.titleEl papel de la membrana mitocondrial externa en el control del metabolismo energético celularspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombianaspa
dcterms.referencesAppaix F., Kuznetsov A.V., Usson Y., Kay L., Andrienko T., Olivares J., Kaambre T., Sikk P., Margreiter R., Saks V. (2003). Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol. 88: 175-190.spa
dcterms.referencesAvéret N., Aguilaniu H., Bunoust O., Gustafsson L., Rigoulet M. (2002). NADH is specifically channeled through the mitochondrial porin channel in Saccharomyces cerevisiae. J Bioenerg Biomembr. 34 (6): 499-506spa
dcterms.referencesBakker B.M., Overkamp K.M., van Maris A.J., Kötter P., Luttik M.A., van Dijken J.P., Pronk J.T. (2001). Stoichi-ometry and compartimentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 25 (1): 15-37spa
dcterms.referencesBenz R., Kottke M., Brdiczka D. (1990). The cationically selective state of the mitochondrial outer membrane pore: A study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta. 1022: 311-318spa
dcterms.referencesBrdiczka D.G., Zorov D.B., Sheu S.S. (2006). Mitochondrial contact sites: Their role in energy metabolism and apoptosis. Biochim. Biophys. Acta. 1762: 148-163spa
dcterms.referencesCamara A.K.S., Zhou Y., Wen P.C., Tajkhorshid E., Kwok W.M. (2017). Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol. 8: 460spa
dcterms.referencesCarafoli E. (2012). The interplay of mitochondria with calcium: An historical appraisal. Cell Calcium. 52 (1): 1-8spa
dcterms.referencesColombini M. (1979). A candidate for the permeability pathway of the outer mitochondrial membrane. Nature. 279: 643-645.spa
dcterms.referencesColombini M. (2016). The VDAC channel: Molecular basis for selectivity. Biochim Biophys Acta. 1863 (10): 2498-2502spa
dcterms.referencesColombini M., Blachly-Dyson E., Forte M. (1996). VDAC, a channel in the outer mitochondrial membrane. Ion Channels. 4: 169-202spa
dcterms.referencesColombini M., Mannella C.A. (2012). VDAC, the early days. Biochim Biophys Acta. 1818 (6): 1438-1443.spa
dcterms.referencesDíaz-Ruiz R., Rigoulet M., Devin A. (2011). The Warburg and Crabtree effects: On the origin of cancer cell energy metabo-lism and of yeast glucose repression. Biochim Biophys Acta. 1807 (6): 568-576spa
dcterms.referencesDolder M., Walzel B., Speer O., Schlattner U., Wallimann T. (2003). Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartimentation. J Biol Chem. 278: 17760-17766spa
dcterms.referencesEarnshaw M.J. (1975). The mechanism of K+-stimulated exogenous NADH oxidation in plant mitochondria. FEBS Lett. 59 (1): 109-112spa
dcterms.referencesEisner D.A., Caldwell J.L., Kistamás K., Trafford A.W. (2017). Calcium and excitation-contraction coupling in the heart. Circ Res. 121 (2): 181-195spa
dcterms.referencesHagman A., Säll T., Piškur J. (2014). Analysis of the yeast short-term Crabtree effect and its origin. FEBS J. 281 (21): 4805-4814spa
dcterms.referencesHammad N., Rosas-Lemus M., Uribe-Carvajal S., Rigoulet M., Devin A. (2016). The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction? Biochim Biophys Acta. 1857 (8): 1139-1146spa
dcterms.referencesHaridas V., Li X., Mizumachi T., Higuchi M., Lemeshko V.V., Colombini M., Gutterman J.U. (2007). Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion. 7 (3): 234-240spa
dcterms.referencesHodge T., Colombini M. (1997). Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol.157 (3): 271-279spa
dcterms.referencesGerencser A.A., Chinopoulos C., Birket M.J., Jastroch M., Vitelli C., Nicholls D.G., Brand M.D. (2012). Quantitative measurement of mitochondrial membrane potential in cultured cells: Calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol. 590 (12): 2845-2871spa
dcterms.referencesJohn S., Weiss J.N., Ribalet B. (2011). Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One. 6 (3): e17674spa
dcterms.referencesKmita H., Budzińska M., Stobienia O. (2003). Modulation of the voltage-dependent anionselective channel by cytoplasmic proteins from wild type and the channel depleted cells of Saccharomyces cerevisiae. Acta Biochim Pol. 50 (2): 415-424.spa
dcterms.referencesLemasters J.J. & Holmuhamedov E. (2006). Voltage-dependent anion channel (VDAC) as mitochondrial governator thinking outside the box. Biochim Biophys Acta. 1762 (2): 181-190.spa
dcterms.referencesLemasters J.J. & Ramshesh V.K. (2007). Imaging of mito-chondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol. 80: 283-295spa
dcterms.referencesLemasters J.J. (2017). Evolution of voltage-dependent anion channel function: From molecular sieve to governator to actuator of ferroptosis. Front Oncol. 7: 303spa
dcterms.referencesLemeshko S.V. & Lemeshko V.V. (2000). Metabolically derived potential on the outer membrane of mitochondria: a computational model. Biophys J. 79: 2785-2800spa
dcterms.referencesLemeshko V.V. (2002). Model of the outer membrane potential generation by the inner membrane of mitochondria. Biophys J. 82: 684-692spa
dcterms.referencesLemeshko V.V. (2006). Theoretical evaluation of a possible nature of the outer membrane potential of mitochondria. Eur Biophys J. 36: 57-66spa
dcterms.referencesLemeshko V.V., Haridas V., Quijano Pérez J.C., Gutterman J.U.(2006a). Avicins, natural anticancer saponins, permeabilize mitochondrial membranes. Arch Biochem Biophys. 454(2): 114-122spa
dcterms.referencesLemeshko V., Guzmán F., Patarroyo M.E., Segura C., Orduz S. (2006b) Synthetic peptide having an ionophoric and antimicrobial activity. United States Patent No. 7041647spa
dcterms.referencesLemeshko V.V. (2014). VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential. Biochim Biophys Acta. 1838: 1362-1371spa
dcterms.referencesLemeshko V. (2015). The Warburg effect as a VDAC-hexokinase-mediated electrical suppression of mitochondrial energy metabolism. FASEB J. 29 (Suppl 1): 725-27spa
dcterms.referencesLemeshko V.V. (2016). VDAC electronics: 3. VDAC-creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria. Biochim Biophys Acta.1858 (7 PtA): 1411-1418spa
dcterms.referencesLemeshko V.V. (2017a). The mitochondrial outer membrane potential as an electrical feedback control of cell energy metabolism. En: T.K. Rostovtseva (Ed.), Molecular Basis for Mitochondrial Signaling, Springer International Publishing, New York, Chapter 9: 217-250spa
dcterms.referencesLemeshko V.V. (2017b). VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration. Biochim Biophys Acta.1859 (11): 2213-2223spa
dcterms.referencesLiu M.Y. & Colombini M. (1992). A soluble mitochondrial protein increases the voltage dependence of the mitochondrial channel, VDAC. J Bioenerg Biomembr. 24: 41-46spa
dcterms.referencesLuttik M.A., Overkamp K.M., Kötter P., de Vries S., van Dijken J.P., Pronk J.T. (1998). The Saccharomyces cerevisiaeNDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem. 273 (38): 24529-24534spa
dcterms.referencesMaldonado E.N., Patnaik J., Mullins M.R., Lemasters J.J.(2010). Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 70 (24): 10192-10201spa
dcterms.referencesMaldonado E.N., Sheldon K.L., DeHart D.N., Patnaik J., Manevich Y., Townsend D.M., Bezrukov S.M., Rostovtseva T.K., Lemasters J.J. (2013). Voltage-dependent anion channels modulate mitochondria metabolism in cancer cells: Regulation by free tubulin and erastin. J Biol Chem.288 (17): 11920-11929spa
dcterms.referencesMannella C.A. (1982). Structure of the outer mitochondrial membrane: Ordered arrays of porelike subunits in outer-membrane fractions from Neurospora crassa mitochondria. J Cell Biol. 94: 680-687.spa
dcterms.referencesMarín-Hernández A., Rodríguez-Enríquez S., Vital-González P.A., Flores-Rodríguez F.L., Macías-Silva M., Sosa-Garrocho M., Moreno-Sánchez R. (2006). Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an overexpressed but strongly product-inhibited hexokinase. FEBS J. 273 (9): 1975-1988spa
dcterms.referencesMastrangelo D., Pelosi E., Castelli G., Lo-Coco F., Testa U.(2017). Mechanisms of anti-cancer effects of ascorbate: Cytotoxic activity and epigenetic modulation. Blood Cells Mol Dis pii. S1079-9796 (17): 30327-3spa
dcterms.referencesO’Gorman E., Beutner G., Dolder M., Koretsky A.P., Brdiczka D., Wallimann T. (1997). The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. 414: 253-257.spa
dcterms.referencesOhnishi T., Kawaguchi K., Hagihara B. (1966). Preparation and some properties of yeast Mitochondria. J Biol Chem. 241(8): 1797-1806spa
dcterms.referencesOrduz S., Lemeshko V. (2016). Péptido sintético policatiónico como agente ionofórico, antimicrobiano, antitumoral e insecticida. Rad. Gaceta 701, No. 174, 31 de julio de 2014, Superintendencia de Industria y Comercio de Colombia. Res. No.: 22123spa
dcterms.referencesPfeiffer T., Morley A. (2014). An evolutionary perspective on the Crabtree effect. Front Mol Biosci. 1: 17.spa
dcterms.referencesPinz I., Ostroy S.E., Hoyer K., Osinska H., Robbins J., Molkentin J.D., Ingwall J.S. (2008). Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. Am J Physiol Heart Circ Physiol. 294 (3): H1459-H1466spa
dcterms.referencesPorcelli A.M., Ghelli A., Zanna C., Pinton P., Rizzuto R., Rugolo M. (2005). pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun. 326: 799-804spa
dcterms.referencesRigoulet M., Aguilaniu H., Avéret N., Bunoust O., Camougrand N., Grandier-Vazeille X., Larsson C., Pahlman I.L., Manon S., Gustafsson L. (2004). Organization and regulation of the cytosolic NADH metabolism in the yeastSaccharomyces cerevisiae.Mol Cell Biochem. 256-257(1-2): 73-81spa
dcterms.referencesRizzuto R., De Stefani D., Raffaello A., Mammucari C.(2012). Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 13 (9): 566-578spa
dcterms.referencesRostovtseva T., Colombini M. (1997). VDAC channels mediate and gate the flow of ATP: Implications for the regulation of mitochondrial function. BiophysJ. 72 (5): 1954-1962.spa
dcterms.referencesRostovtseva T.K., Komarov A., Bezrukov S.M., Colombini M. (2002). Dynamics of nucleotides in VDAC channels: Structure-specific noise generation. Biophys J. 82 (1 Pt 1): 193-205.spa
dcterms.referencesRostovtseva T.K., Bezrukov S.M. (2012). VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta. 1818 (6): 1526-1535spa
dcterms.referencesRostovtseva T.K., Gurnev P.A., Protchenko O., Hoogerheide D.P., Yap T.L., Philpott C.C., Lee J.C., Bezrukov S.M.(2015). α-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem. 290 (30):18467-18477.spa
dcterms.referencesRostovtseva T.K., Gurnev P.A., Protchenko O., Hoogerheide D.P., Yap T.L., Philpott C.C., Lee J.C., Bezrukov S.M.(2015). α-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem. 290 (30):18467-18477spa
dcterms.referencesRostovtseva, T.K., Hoogerheide D.P., Rovni A., Bezrukov S.M.(2017). Lipids in regulation of the mitochondrial outer membrane permeability, bioenergetics, and metabolism. In: T.K. Rostovtseva (Ed.), Molecular Basis for Mitochondrial Signaling, Springer International Publishing, New York, Chapter. 8: 185-215spa
dcterms.referencesSaks V., Guzun R., Timohhina N., Tepp K., Varikmaa M., Monge C., Beraud N., Kaambre T., Kuznetsov A., Kadaja L., Eimre M., Seppet E. (2010). Structure–function relation-ships in feedback regulation of energy fluxes in vivo in health and disease: Mitochondrial interactosome. Biochim Biophys Acta. 1797 (6-7): 678-697.spa
dcterms.referencesSen U., Shenoy P.S., Bose B. (2017). Opposing effects of low versus high concentrations of water-soluble vitamins/dietary ingredients vitamin C and niacin on colon cancer stem cells (CSCs). Cell Biol Int. 41 (10): 1127-1145.spa
dcterms.referencesShoshan-Barmatz V., Ben-Hail D., Admoni L., Krelin Y., Tripathi S.S. (2015). The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta.1848 (10 PtB): 2547-2575spa
dcterms.referencesShoshan-Barmatz V., Krelin Y., Shteinfer-Kuzmine A., Arif T.(2017). Voltage-dependent anion channel 1 as an emerging drug target for novel anti-cancer therapeutics. Front Oncol.7: 154.spa
dcterms.referencesShoshan-Barmatz V., Krelin Y., Shteinfer-Kuzmine A. (2018). VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. Cell Calcium. 69: 81-100.spa
dcterms.referencesSimson P., Jepihhina N., Laasmaa M., Peterson P., Birkedal R., Vendelin M. (2016). Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are comple-mented with a small number of open mitochondrial voltage-dependent anion channels. J Mol Cell Cardiol. 97: 197-203.spa
dcterms.referencesTimohhina N., Guzun R., Tepp K., Monge C., Varikmaa M., Vija H., Sikk P., Kaambre T., Sackett D., Saks V. (2009). Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: Some evidence for mitochondrial interactosome. J Bioenerg Biomembr. 41: 259-275.spa
dcterms.referencesVander Heiden M.G., Chandel N.S., Li X.X., Schumacker P.T., Colombini M., Thompson C.B. (2000). Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA. 97(9): 4666-4671spa
dcterms.referencesVazeille X., Larsson C., Pahlman I.L., Manon S., Gustafsson L.(2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem. 256-257 (1-2): 73-81.spa
dcterms.referencesWallimann T., Tokarska-Schlattner M., Schlattner U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 40: 1271-1296.spa
dcterms.referencesWilson J.E. (1997). Homologous and heterologous interactions between hexokinase and mitochondrial porin: Evolutionary implications. J Bioenerg Biomembr. 29 (1): 97-102.spa
dcterms.referencesXia J., Xu H., Zhang X., Allamargot C., Coleman K.L., Nessler R., Frech I., Tricot G., Zhan F. (2017). Multiple myeloma tumor cells are selectively killed by pharmacologically-dosed ascorbic acid. EBioMedicine. 18: 41-49.spa
dcterms.referencesZizi M., Forte M., Blachly-Dyson E., Colombini M. (1994). NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem. 269 (3): 1614-1616.spa
dcterms.referencesZorova L.D., Popkov V.A., Plotnikov E.Y., Silachev D.N., Pevzner I.B., Jankauskas S.S., Babenko V.A., Zorov S.D., Balakireva A.V., Juhaszova M, Sollott S.J., Zorov D.B. (2017). Mitochondrial membrane potential. Anal Biochem pii. S0003-2697 (17): 30293-2.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.549-
dc.subject.proposalMembrana externa mitocondrialspa
dc.subject.proposalMitochondrial outer membraneeng
dc.subject.proposalVDACspa
dc.subject.proposalVDACeng
dc.subject.proposalPotencial de membranaspa
dc.subject.proposalMembrane potentialeng
dc.subject.proposalLevaduraspa
dc.subject.proposalYeasteng
dc.subject.proposalCáncerspa
dc.subject.proposalCancereng
dc.subject.proposalCorazónspa
dc.subject.proposalHearteng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume42spa
dc.relation.citationstartpage6spa
dc.relation.citationendpage21spa
dc.publisher.placeBogotá, Colombiaspa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationissue162spa
dc.type.contentDataPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
1. El papel de la membrana mitocondrial externa en el control del metabolismo energético celular.pdfCiencias biomédicas1.73 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons